摘要
基于傅立叶谱配点法与隐式差分格式,构造了一种针对耦合Schrodinger-KdV方程的数值解法.数值实验结果表明,该方法具有较高的有效性、准确性和较好的不变量守恒性.
A numerical solution for coupled Schrodinger-KdV equations is obtained by the Fourier spectral collocation method and implicit difference scheme.The numerical experiment results show that the method is highly effective,accurate and conservative.
作者
周浩
杜渺勇
蒋捷
韩丹夫
ZHOU Hao;DU Miaoyong;JIANG Jie;HAN Danfu(School of Science,Hangzhou Normal University,Hangzhou 311121,China)
出处
《杭州师范大学学报(自然科学版)》
CAS
2020年第3期267-272,281,共7页
Journal of Hangzhou Normal University(Natural Science Edition)