期刊文献+

基于涡致振动的内置压电悬臂梁柔性圆管能量收集结构的数值模拟 被引量:5

Numerical Simulation of Energy Harvesting Structure of Flexible Circular Tube with Built-in Piezoelectric Cantilever Beam Based on Vortex Induced Vibration
下载PDF
导出
摘要 为了分析基于涡致振动的内置双晶压电悬臂梁柔性圆管压电能量收集结构的运动机理和性能,对其进行了流固耦合和压电耦合数值模拟。对一端固定一端自由的柔性圆管进行了流固耦合数值模拟,在流速为1.1 m/s,柔性圆管直径D为0.03 m,高度为0.11 m时,该结构的涡致振动能够处于稳定的锁频状态。对折合速度为1.3~4.0,中心距为3 D^6D的前置等径刚性圆柱阻流体的柔性圆管进行了流固耦合和压电耦合的数值模拟。研究结果表明,柔性圆管的振幅响应和压电悬臂梁的开路输出电压均随折合速度的增大而增大,在仿真参数范围内,结构的振幅响应和输出电压时程曲线均为稳定的周期函数。当折合流速为4.0,中心距为5 D时,结构产生的振幅最大,为2.38×10-3 m,电压为6.75 V。证明了根据不同流速,可以通过调节圆管的结构参数以使涡致振动产生锁频现象,从而得到最大振幅和输出电压,进而可将其用于电能收集,为下一步能量收集结构的实验制备提供了理论参考。 To understand the mechanism and performance of a flexible circular tube piezoelectric energy harvesting structure with built-in bimorph piezoelectric cantilever beam based on vortex-induced vibration,a fluid-structure coupling and piezoelectric coupling numerical simulation were conducted.First,the fluid-structure coupling numerical simulation of the flexible circular tube with one fixed end and another free end was performed.Results show that at the velocity 1.1 m/s,the diameter of the flexible circular tube was 0.03 m and the height was 0.11 m,the vortex-induced vibration of the structure could be in a stable resonance state.Second,the simulation was done in the reduced velocity of 1.3~4.0 and the center distance of 3 D^6D.Results show that the response amplitude of flexible circular tube and the open circuit output voltage of piezoelectric cantilever beam increased with the velocity decrease,and both the time-history curve of response amplitude and output voltage were in stable periodic functions within the range of simulation parameters.Third,at the velocity of 4.0 and the center distance of 5D,the amplitude generated by the structure reached the peak value of 2.38×10-3 m,and the voltage was 6.75 V.Therefore,the structure parameters of the circular tube could be adjusted to control resonance in vortex-induced vibration to obtain the maximum amplitude and output voltage.provide a theoretical reference for the experimental setup of energy harvesting structure in the future.
作者 李莉 林杉杉 王金亮 安然然 路晨贺 LI Li;LIN Shan-shan;WANG Jin-liang;AN Ran-ran;LU Chen-he(School of Computer Science and Technology,Shenyang University of Chemical Technology,Shenyang 110142,China)
出处 《科学技术与工程》 北大核心 2020年第13期5210-5216,共7页 Science Technology and Engineering
基金 辽宁省自然科学基金指导计划(2019-ZD-0075) 辽宁省教育厅青年项目(LQ2017009)。
关键词 压电能量收集 涡致振动 流固耦合 压电耦合 piezoelectric energy harvesting vortex-induced vibration fluid-structure coupling piezoelectric coupling
  • 相关文献

参考文献6

二级参考文献39

  • 1贾晓荷,刘桦.双圆柱绕流的大涡模拟[J].水动力学研究与进展(A辑),2008,23(6):625-632. 被引量:34
  • 2卞正宁,罗建辉.高雷诺数下高质量比圆柱涡致振动的数值模拟[J].工程力学,2015,32(6):200-206. 被引量:4
  • 3ERTURK A,INMAN D J.An experimentally validated bimorph cantilever model for piezoelectric energy harvesting from base excitations[J].Smart Materials and Structures,2009,18(2):025009.
  • 4ERTURK A,INMAN D J.A distributed parameter electromechanical model for cantilevered piezoelectric energy harvesters[J].Journal of Vibration and Acoustics,2008,130(4):041002.
  • 5WANG Hongyan,TANG Lihua,SHAN Xiaobiao,et al.Modeling and performance evaluation of a piezoelectric energy harvester with segmented electrodes[J].Smart Structures and Systems,2014,14(2):247-266.
  • 6SONG Rujun,SHAN Xiaobiao,LV Fengchi,et al.A study of vortex-induced energy harvesting from water using Pzt piezoelectric cantilever with cylindrical extension[J].Ceramics International,2015,41(S1):S768-S773.
  • 7SHAN Xiaobiao,SONG Rujun,LIU Bo,et al.Novel energy harvesting:a macro fiber composite piezoelectric energy harvester in the water vortex[J].Ceramics International,2015,41(S1):S763-S767.
  • 8AKAYDIN H D,ELVIN N,ANDREOPOULOS Y.Energy harvesting from highly unsteady fluid flows using piezoelectric materials[J].Journal of Intelligent Material Systems and Structures,2010,21(13):1263-1278.
  • 9AKAYDIN H D,ELVIN N,ANDREOPOULOS Y.Wake of a cylinder:aparadigm for energy harvesting with piezoelectric materials[J].Experiments in Fluids,2010,49(1):291-304.
  • 10DAI H L,ABDELKEFI A,WANG L.Piezoelectric energy harvesting from concurrent vortex-induced vibrations and base excitations[J].Nonlinear Dynamics,2014,77(3):967-981.

共引文献37

同被引文献43

引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部