期刊文献+

硅基Cu(N3)2@CNTs复合含能薄膜的制备与表征 被引量:3

Preparation and Characterization of Silicon⁃based Cu(N3)2@CNTs Composite Films
下载PDF
导出
摘要 针对叠氮化铜(Cu(N3)2)静电感度高、难以实际应用的问题,设计了一种基于硅基底的内嵌叠氮化铜碳纳米管复合含能薄膜材料。首先,采用改进的两步阳极氧化法在硅基底上制备多孔氧化铝薄膜,然后将其作为模板,先后通过化学气相沉积法和电化学沉积法在氧化铝孔道中制备内嵌铜纳米颗粒的定向碳纳米管(CNTs)阵列,最后利用气固相叠氮化反应制备得到可与微机电系统(MEMS,Micro-electro Mechanical Systems)加工工艺相兼容的硅基Cu(N3)2@CNTs复合含能薄膜。利用场发射扫描电子显微镜(FESEM)、透射电子显微镜(TEM)和X射线衍射(XRD)等手段对材料的微观形貌、晶体结构和组成成分进行了表征,利用差示扫描量热法(DSC)对复合含能薄膜进行了热分解动力学研究,采用升降法测试了复合含能薄膜的静电感度。研究结果表明:硅基Cu(N3)2@CNTs复合含能薄膜的活化能约为230.00 kJ·mol^-1,热爆炸临界温度约为193.18℃;复合薄膜的静电感度明显得到改善,50%的发火能量约为4.0 mJ。 Considering the problem that copper azide(Cu(N3)2)has high electrostatic sensitivity and it is difficult to be practically applied,the silicon‐based Cu(N3)2@carbon nanotubes(CNTs)composite energetic film which can be compatible with Microelectro Mechanical Systems(MEMs)was designed.First,the silicon‐based porous alumina film with CNTs grown inside the pores was prepared by a modified two‐step anodic oxidation method.Then copper nanoparticles were deposited in the CNTs by electrochemical deposition.The hydrogen azide gas was prepared by reaction between the nitric acid and sodium azide,which reacted with the copper nanoparticles to synthesize Cu(N3)2.The morphology,structure and composition of the prepared silicon‐based Cu(N3)2@CNTs composite energetic films were characterized by field emission scanning electron microscopy(FESEM),transmission electron microscopy(TEM)and X‐ray diffraction(XRD).Thermal decomposition kinetics of the composite energetic film was studied by differential scanning calorimetry(DSC).Electrostatic sensitivity of the composite energetic film was tested by lifting method.Results show that activation energy of the silicon‐based Cu(N3)2@CNTs composite film is about 230.00 kJ·mol^-1,while the critical temperature of thermal explosion is about 193.18℃and the 50%ignition energy is about 4.0 mJ.The electrostatic sensitivity of silicon‐based Cu(N3)2@CNTs composite energetic film is significantly reduced.
作者 魏海 刘旭文 胡艳 唐惠梁 叶迎华 沈瑞琪 WEI Hai;LIU Xu⁃wen;HU Yan;TANG Hui⁃liang;YE Ying⁃hua;SHEN Rui⁃qi(School of Chemical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China)
出处 《含能材料》 EI CAS CSCD 北大核心 2020年第6期557-563,共7页 Chinese Journal of Energetic Materials
基金 江苏省研究生科研与实践创新计划资助(KYCX19_0320)。
关键词 复合含能薄膜 Cu(N3)2@CNTs 静电感度 电化学沉积 composite energetic films Cu(N3)2@CNTs electrostatic sensitivity electrochemical deposition
  • 相关文献

参考文献3

二级参考文献18

  • 1FedoroffBT, Aaronson H A, Reese E F, etal. The encyclopedia of explosives and related items (Volume 1 ) I MI. United states: National Technical Information Service, 1968 : A532-A535.
  • 2Jean D. MEMS micro-detonator based fuzing[ C] //The 53rd An- nual Fuze Conference, Lake Buena Vista, Florida, United States : 2009.
  • 3Cope R. NDiA's 51t annual fuze conference UNITED STATES navy overview [ C ] //The 51s Annual Fuze Conference, Nash- ville, Tennessee, United States: 2007.
  • 4Mitchell S. NDIA 50th annual fuze conference UNITED STATES navy overview[ C]///The 50th Annual Fuze Conference, Seattle, Washington, United States: 2006.
  • 5Laib G. Integrated thin film explosive micro-detonator: United.States, US7497164[ P]. 2009.
  • 6Jean D, BeggansM, Laib G,et al. MEMS microdetonator / initi- ator apparatus for a MEMS fuze: United States,US7490552[ P]. 2009.
  • 7Fan L, Beggans M, Chen E, et al. MEMS fuze assembly:United States,US7913623[ P]. 2011.
  • 8Farhad F, Bellito J V, Koppes W M, et al. The adsorption of hydrazoic acid on singe-walled carbon nanotubes[ J ]. Materials Chemistry and Physics , 2008, 112 ( 2 ) : 427-431.
  • 9Pelletier V, Bhattacharyya S, Knoke I, et al. Copper azide con- fined inside templated carbon nanotubes [ J ]. Advanced Func- tionalMaterials, 2010, 20(18) : 3168-3174.
  • 10Sayan B, Magdy B, Farhad F, et al. Carbon nanotubes contai-ning confined copper azide: United States, US20120060984 [ P ]. 2012.

共引文献20

同被引文献49

引证文献3

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部