期刊文献+

基于随机粒子群算法的EV充电站建设选址推荐算法 被引量:2

Recommended Algorithm for Electric Vehicle Charging Station Siting Based on Random Particle Swarm Optimization
下载PDF
导出
摘要 随着新能源汽车不断普及,其配套充电设施的建设也同样需要不断完善。分析了充电站选址的不同场景以及对电网、交通网的互动关系,通过结合Bagging算法与粒子群算法(particle swarm optimization, PSO)算法,求解考虑充电站建设成本及有效性的充电站规划模型,具有较高的鲁棒性。并根据最终给出的规划方案,计算不同地区的充电站建设重要程度,为充电站的建设提供更宏观可靠的建议。 With continuous popularization of new energy vehicles,construction of their supporting charging facilities need to be improved continuously.Different scenarios for charging station siting and their interaction with power grid and traffic network were analyzed.By combining Bagging algorithm and particle swarm optimization(PSO),a charging station planning model considering both construction cost and effectiveness of the charging station was found-a model of high robustness.According to the final planning scheme,degrees of importance of station construction in different areas were calculated,thus providing more macroscopic and reliable suggestions for charging station construction.
作者 杨纲 屈婉莹 丁圣康 陆轶祺 解大 Yang Gang;Qu Wanyin;Ding Shengkang;Lu Yiqi;Xie Da(State Grid Shanghai Electric Power Co.Fengxian Power Supply Co.,Shanghai 201406,China;College of Electronic Information and Electrical Engineering,Shanghai Jiao Tong University,Shanghai 200240,China)
出处 《电气自动化》 2020年第3期10-12,16,共4页 Electrical Automation
基金 “上海市郊新能源公交车充电设施建设中供电方案和规划配套的研究”(SGTYHT/17-JS-199)资金支持。
关键词 电动汽车 充电站 选址定容 BAGGING 粒子群算法 electric vehicle charging station siting and sizing Bagging algorithm particle swarm optimization(PSO)
  • 相关文献

参考文献9

二级参考文献106

共引文献540

同被引文献27

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部