期刊文献+

基于流向图和非朴素贝叶斯推理的滚柱轴承故障程度识别 被引量:2

A Fault severity identification of roller bearings based on flow graph and NNBI
下载PDF
导出
摘要 针对流向图分类推理能力较弱、计算成本较高的问题,提出一种基于流向图和非朴素贝叶斯推理的滚柱轴承故障程度识别方法。提取训练样本中滚柱轴承的故障特征构建标准化流向图,用于直观地表示属性间的因果关系;采用基于征兆属性节点重要度的节点约简算法删除冗余的征兆属性节点,以降低分类推理的计算复杂度;利用基于流向图的非朴素贝叶斯推理算法识别待诊样本中滚柱轴承的状态。通过实验验证了所提方法在直观和准确识别滚柱轴承故障程度方面的有效性。 To address the issue of poor reasoning ability and the high computational burden of flow graphs,a fault severity identification method of roller bearings using flow graph and Non-naive Bayesian inference(NNBI)was put forward.A normalized flow graph constructed according to fault features of roller bearings extracted from training samples was used to represent the causal relationship among attributes in an intuitive manner.Then a node reduction algorithm based on SDCAN was developed to delete redundant condition attribute nodes,which could reduce computational complexity of mode identification.An NNBI algorithm based on flow graph was presented to identify roller bearing conditions in test samples.Experimental results demonstrated that the proposed method could intuitively and accurately recognize fault severities of roller bearings.
作者 于军 刘立飞 邓立为 于广滨 YU Jun;LIU Lifei;DENG Liwei;YU Guangbin(Key Laboratory of Advanced Manufacturing and Intelligent Technology,Ministry of Education,Harbin University of Science and Technology,Harbin 150080,China;School of Automation,Harbin University of Science and Technology,Harbin 150080,China;Yancheng Hali Power Transmission and Intelligent Equipment Industry Research Institute Co.,Ltd.,Yancheng 224006,China;School of Mechanical and Power Engineering,Harbin University of Science and Technology,Harbin 150080,China)
出处 《计算机集成制造系统》 EI CSCD 北大核心 2020年第5期1202-1210,共9页 Computer Integrated Manufacturing Systems
基金 国家重点研发计划资助项目(2019YFB2006400) 国家自然科学基金资助项目(51705111,61806060) 黑龙江省科技重大专项资助项目(2019ZX03A02) 黑龙江省杰出青年基金资助项目(JC2014020)。
关键词 流向图 非朴素贝叶斯推理 滚柱轴承 故障程度识别 节点约简 flow graph non-naive Bayesian inference roller bearing fault severity identification node reduction
  • 相关文献

参考文献4

二级参考文献55

  • 1张琳,孙安全,王天一,杨新宇,张学礼.某型导弹装备的故障智能诊断[J].中南大学学报(自然科学版),2013,44(S1):216-220. 被引量:4
  • 2高金吉.装备系统故障自愈原理研究[J].中国工程科学,2005,7(5):43-48. 被引量:45
  • 3陈予恕.机械故障诊断的非线性动力学原理[J].机械工程学报,2007,43(1):25-34. 被引量:55
  • 4HESS A, FILA L. The joint strike fighter(JSF)PHM con- eept: potential impact on aging aircraft problems[C]//Proeeed- ings of IEEE Aerospace Conference. Washington, D. C., USA : IEEE, 2002 : 3021-3026.
  • 5LEE Jay, WU Fangji, ZHAO Wenyu, et al. Prognostics and health management design for rotary machinery systems-re- views, methodology and applications[J]. Mechanical Systems and Signal Processing,2014,42(1/2):313-334.
  • 6KIM H E, TAN A C C, MATHEW J, et al. Bearing fault prognosis based on health state probability estimation[J]. Ex- pert Systems with Applications,2012,39(5):5200-5213.
  • 7WANG P, VACHTSEVANOS G. Fault prognosis using dy- namic wavelet neural networks[C]//Proceedings of IEEE Sys- tems Readiness Technology Conference. Washington, D. C. , USA : IEEE, 2001 : 857-870.
  • 8JANJARASJITT S, OCAK H, LOPARO K A. Bearing cond ition diagnosis and prognosis using applied nonlinear dynamical analysis of machine vibration signal[J]. Journal of Sound and Vibration, 2008,317 (1-2) : 112-126.
  • 9WU Z H, HUANG N E. Ensemble empirical mode decompo- sition:a noise assisted data analysis method[J]. Advances in Adaptive Data Analysis, 2009,1 (1) : 1-41.
  • 10ZHANG Jian, YAN Ruqiang, GAO R X, et al. Performance enhancement of ensemble empirical mode decomposition[J]. Mechanical Systems and Signal Processing, 2010, 24 ( 7 ): 2014-2023.

共引文献381

同被引文献74

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部