期刊文献+

横向布置单桩潮流能水轮机的数值模拟研究 被引量:5

Numerical simulation study of single pile tidal stream turbine with different lateral spacing
下载PDF
导出
摘要 文章以单桩潮流能水轮机为研究对象,通过数值计算的方法对横向布置下两台单桩潮流能水轮机的尾流场及机组性能进行研究。通过对比不同横向间距下单桩潮流能水轮机的尾流场,获得了横向间距对潮流能水轮机尾流场的影响规律。数值计算结果表明:单桩结构会改变水轮机的纵向尾流场,但对横向尾流场的影响较小;随着横向间距的改变,机组的功率系数和推力系数的变化幅值不超过0.01;横向间距对机组的横向尾流场也造成了影响,导致各个机组的尾流中心偏向两个机组的中间位置,且随着横向间距的增大,机组u/U0低于0.9的范围随之增大,幅值可达0.26D。 This paper takes single-pile tidal stream turbine as the research object,and studies the wake field and performance of two single-pile tidal stream turbines in a horizontal layout by numerical calculation.By comparing the wake field of a single pile tidal stream turbine with different lateral spacing,the law of different lateral spacing on the wake development of tidal stream turbine is obtained.The numerical calculation results show that:The single pile structure will change the longitudinal wake of the tidal stream turbine,but it has little effect on the lateral wake;With the change of the lateral spacing,the torque coefficient and thrust coefficient have changed less than 0.01.The lateral spacing also affects the lateral wake,causing the center of the wake of each tidal steam turbine to deviate to the middle position of the two tidal stream turbines.As the lateral distance increases,the range of u/U0 below 0.9 increases,and the amplitude can reach 0.26D.
作者 李东阔 郑源 张飞 秦俊 邓磊 周攀 Li Dongkuo;Zheng Yuan;Zhang Fei;Qin Jun;Deng Lei;Zhou Pan(Technology Center of State Grid Xinyuan Company,Beijing 100161,China;Innovation Research Institute,Hohai University,Nanjing210098,China)
出处 《可再生能源》 CAS 北大核心 2020年第6期784-790,共7页 Renewable Energy Resources
基金 国家电网公司科技资助项目(52573015000J) 国家自然科学基金项目(51809082)。
关键词 单桩潮流能水轮机 数值模拟 横向布置 尾流效应 single-pile tidal stream turbine numerical simulation lateral arrangement wake effect
  • 相关文献

参考文献6

二级参考文献41

  • 1王传崑,卢苇.海洋能资源分析方法及储量评估[M].北京:海洋出版社,2009.
  • 2中国科学技术协会.能源科学技术学科发展报告[R].北京:中国科学技术出版社,2008.
  • 3Batten W M J, Bahai A S, Molland A F, et al. The prediction of the hydrodynamic performance of marine current turbines[J]. Re- newable Energy. 2008, 33(5): 1085 -1096.
  • 4Harrison M E, Batten W M J, Myers I, E, et al. Comparison be tween CFD simulations and experiments for predicting the far wake of horizontal ax is tidal turbines[J] . lET Renewable Power Gener ation, 2010, 4(6): 613-627.
  • 5Spalart P R, Allmaras S R. A one-equation turbulence model for aerodynamic flows[J]. 30th Aerospace Sciences Meeting and Ex hibit, 1992(92): 0439.
  • 6Yakhot V, Orszag S A, Thangam S, et al. Development of turbu lence models for shear flows by a double expansion technique[J]. Physics of Fluids A.- Fluid Dynamics (1989 1993), 1992, 4(7): 1510-1520.
  • 7Wei Yang, Yong Quan, Xinyang Jin, et al. Influences of equilibri um atmosphere boundary layer and turbulence parameter on wind loads of low- rise buildings[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008, 96(10): 2080-2092.
  • 8BAHIJ A S, W M J, BTTTEN, et al. Experimental verifications of numerical predictions for the hydrodynamic performance of hor- izontal axis marine current turbine[J]. Renewable Energy, 2007, 32(15) : 2479-2490.
  • 9GARRETT Chris, CUMMINS Patrick. Generating power from tidal currents [J]. Journal of Waterway, Port, Coastal and Ocean Engineering, 2004, 130: 114-118.
  • 10MYERS L E, BAHAJ A S. Experimental analysis of the flow field around horizontal axis tidal turbines by use of scale mesh disk rotor simulators [J]. Ocean Engineering, 2009, 37(17): 218-227.

共引文献102

同被引文献55

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部