期刊文献+

改进灰狼优化模糊核聚类在风电齿轮箱故障诊断中的应用 被引量:6

Application of Improved Grey Wolf Optimization KFCM Algorithm in Fault Diagnosis of Wind Turbine Gearbox
下载PDF
导出
摘要 为准确地辨识已知、未知故障类别,提出一种基于模糊核聚类模型的风电齿轮箱故障诊断新方法。首先,将模型初始聚类中心和核参数作为优化变量,采用改进型灰狼优化算法寻优求解。改进型灰狼优化算法中引入莱维飞行策略和非线性收敛向量,能够提高算法的收敛速度与精度,从而获得最佳分类结果下的各聚类中心和核参数;然后,根据待测样本与各聚类中心之间的核空间样本相似度,先判断样本是否属于已知故障,再诊断故障类别;最后,通过模拟风电齿轮箱的故障实验验证了该方法的有效性。 In order to accurately identify the known and unknown fault types,a new fault diagnosis method for wind turbine gearbox based on the kernel fuzzy c-means clustering(KFCM)is proposed. The initially cluster centers and the kernel parameter of the KFCM model are taken as optimization variables,and an improved grey wolf optimization algorithm is used to find the optimal centers. The introduction of Levy flight strategy and nonlinear coefficient vector in the improved grey wolf optimization algorithm can improve the convergence speed and accuracy of the algorithm,and the clustering centers and kernel parameters can be obtained under the optimal classification results. Then,according to the similarity between the new sample and the centers in the kernel space,firstly whether the sample belongs to a known fault type is determined,and then the fault type is diagnosed. Finally,the effectiveness of the proposed method is verified by experiments simulating different fault types of wind turbine gearbox.
作者 郑小霞 钱轶群 王帅 赵坤 Zheng Xiaoxia;Qian Yiqun;Wang Shuai;Zhao Kun(School of Automation Engineering,Shanghai University of Electric Power,Shanghai 200090,China)
出处 《机械传动》 北大核心 2020年第6期142-148,共7页 Journal of Mechanical Transmission
基金 国家自然科学基金(51507098) 上海市电站自动化技术重点实验室项目(13DZ2273800)。
关键词 灰狼优化算法 莱维飞行 模糊核聚类 风电齿轮箱 故障诊断 Grey wolf optimization Levy flight Kernel fuzzy clustering Wind turbine gearbox Fault diagnosis
  • 相关文献

参考文献9

二级参考文献88

  • 1李爱国.多粒子群协同优化算法[J].复旦学报(自然科学版),2004,43(5):923-925. 被引量:398
  • 2高海兵,周驰,高亮.广义粒子群优化模型[J].计算机学报,2005,28(12):1980-1987. 被引量:102
  • 3郭厚明,行志刚,荆双喜.无量纲参数在矿用低速重载齿轮故障诊断中的应用[J].煤炭科学技术,2006,34(8):28-31. 被引量:9
  • 4江善和,王其申,江巨浪.一种新型Skew Tent映射的混沌混合优化算法[J].控制理论与应用,2007,24(2):269-273. 被引量:16
  • 5YANG X S,DEB S. Engineering optimization by cuckoo search [ J]. International Journal of Mathematical Modeling and Nu- merical Optimization, 2010,1 (4) : 330 - 343.
  • 6CIVICIOGLU P, BESDOK E. A conceptual comparison of the cuckoo search, particle swarm optimization, differential evolu- tion and artificial bee colony algorithms [ J ]. Artificial Intelli- gence Review,2013,39(4) :315 - 346.
  • 7YANG X S. Cuckoo search for inverse problems and simulated driven shape optimization[ J ]. Journal of Computational Meth- ods in Sciences and Engineering, 2011,12( 1):129- 137.
  • 8LAYEB A,BOUSSALIA S R.A novel quantum inspired cuck- oo search algorithm for bin packing problem[ J]. International Journal of Information Technology and Computer Science, 2012,4(5) :58 - 67.
  • 9VALIAN E, MOHANNA S, TAVAKOLI S. Improved cuckoo search algorithm for feed forward neural network Ixaining[ J]. International Journal of Afificial Intelligence & Applications, 2011,2(3) :36 - 43.
  • 10GANDOM ! A, YANG X, ALAVI A. Cuckoo search algo- rithm:a metaheuristic approach to solve structural optimization problems [ J]. Engineering with Computers, 2013,29 ( 1 ) : 17 - 35.

共引文献273

同被引文献70

引证文献6

二级引证文献35

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部