期刊文献+

特征分组提取融合深度网络手写汉字识别 被引量:3

Feature Grouping Extraction Fusion of Deep Network Offline Handwritten Chinese Character Recognition
下载PDF
导出
摘要 针对传统脱机手写汉字识别的过程复杂、精度低,而常用卷积神经网络的特征信息提取不充分,同时存在相同特征信息的重叠和冗余问题。设计了一个特征分组提取融合的深度卷积神经网络模型。通过多级堆叠的特征分组提取模块,提取图像的深层抽象特征信息,并进行特征信息之间的交流融合。利用设计的下采样和通道扩增模块,在降低特征维度的同时保留图像重要信息。将特征信息进行精炼和浓缩,来解决特征信息的重叠和冗余问题。最终训练出的神经网络达到top1当前先进的正确率为97.16%,同时top5正确率为99.36%,并具有很好的泛化能力。 For traditional offline handwritten Chinese character recognition,the process is complex and the accuracy is low.The feature information extraction of common convolutional neural networks is insufficient,and there are overlap and redundancy problems of the same feature information.In this paper,a deep convolutional neural network model for feature group extraction and fusion is designed.Through the multi-level stacked feature group extraction module,the deep abstract feature information of the image is extracted,and the communication and fusion between the feature information is performed.Using the designed downsampling and channel amplification module to preserve the important information of the image while reducing the feature dimension.The feature information is refined and condensed to solve the problem of overlapping and redundancy.In the end,the trained neural network reaches the current advanced accuracy of top1(97.16%)and top5(99.36%),with good generalization ability.
作者 李国强 周贺 马锴 张露 LI Guoqiang;ZHOU He;MA Kai;ZHANG Lu(Key Lab of Industrial Computer Control Engineering of Hebei Province,Yanshan University,Qinhuangdao,Hebei 066004,China)
出处 《计算机工程与应用》 CSCD 北大核心 2020年第12期163-168,共6页 Computer Engineering and Applications
基金 国家自然科学基金(No.61403331) 河北省自然科学基金(No.F2016203427) 中国博士后科学基金(No.2015M571280) 河北省高等学校优秀青年培养计划(No.BJ2017033)。
关键词 手写汉字识别 卷积神经网络 特征分组 信息精炼和浓缩 handwritten Chinese character recognition Convolutional Neural Network(CNN) feature grouping information refining and concentration
  • 相关文献

参考文献2

二级参考文献150

  • 1钱跃良,林守勋,刘群,刘洋,刘宏,谢萦.863计划中文信息处理与智能人机接口基础数据库的设计和实现[J].高技术通讯,2005,15(1):107-110. 被引量:4
  • 2Hildebrandt T H, Liu W T. Optical recognition of handwritten Chinese characters:advances since 1980. Pattern Recognition, 1993, 26(2):205-225.
  • 3Suen C Y, Berthod M, Mori S. Automatic recognition of handprinted characters——the state of the art. Proceedings of the IEEE, 1980, 68(4):469-487.
  • 4Tai J W. Some research achievements on Chinese character recognition in China. International Journal of Pattern Recognition and Artificial Intelligence, 1991, 5(01n02):199-206.
  • 5Liu C L, Jaeger S, Nakagawa M. Online recognition of Chinese characters:the state-of-the-art. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2004, 26(2):198-213.
  • 6Cheriet M, Kharma N, Liu C L, Suen C Y. Character Recognition Systems:a Guide for Students and Practitioners. USA:John Wiley & Sons, 2007.
  • 7Plamondon R, Srihari S N. Online and off-line handwriting recognition:a comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2000, 22(1):63-84.
  • 8Dai R W, Liu C L, Xiao B H. Chinese character recognition:history, status and prospects. Frontiers of Computer Science in China, 2007, 1(2):126-136.
  • 9Liu C L. High accuracy handwritten Chinese character recognition using quadratic classifiers with discriminative feature extraction. In:Proceedings of the 18th International Conference on Pattern Recognition. Hong Kong, China:IEEE, 2006.942-945.
  • 10Long T, Jin L W. Building compact MQDF classifier for large character set recognition by subspace distribution sharing. Pattern Recognition, 2008, 41(9):2916-2925.

共引文献114

同被引文献15

引证文献3

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部