期刊文献+

铝合金搅拌摩擦焊液冷流道承压力学模型 被引量:1

Mechanical Model of Friction Stir Welding Aluminum Alloy Liquid Cooling Channel with Internal Pressure
下载PDF
导出
摘要 为了实现液冷组件的可靠性设计,并且缩短液冷流道结构的设计周期,文中在通过力学仿真计算获得大量仿真数据的基础上,探索了流道承压共性规律,明确了液冷流道承压最大应力响应的影响因素及影响规律。结果表明,搅拌摩擦焊液冷流道内部的最大等效应力与盖板厚度呈反比,与盖板承压宽度的平方呈正比,与内压呈正比,在此基础上,建立了液冷流道承压力学模型σ=KPL2H-1,其中,对于铝合金液冷组件,K=0.243 mm-1。该承压力学模型为液冷组件提供了力学设计依据,根据液冷组件流道内压可以快速明确其几何尺寸,大大提高了设计效率,且广泛适用于采用其他焊接方法制造的同结构类型的液冷组件。 In order to realize the reliability design of the liquid cooling component and shorten the structural design cycle of the liquid cooling channel,this paper explores the common laws of the channel pressure based on the large amount of mechanical simulation results.The influence factors and laws of the maximum stress response of the channel pressure are clarified.Results show that the maximum stress in the friction stir welding liquid cooling channel is inversely proportional to the thickness of the cover plate,is proportional to the square of the bearing width of the cover plate,and is proportional to the channel internal pressure.Then the mechanical modelσ=KPL2H-1 for the pressure of the liquid cooling channel is established,for aluminum alloy liquid cooling component,K=0.243 mm-1.The mechanical model provides mechanical design basis for the liquid cooling component.Fast selecting the geometrical dimension of the liquid cooling component according to its channel internal pressure greatly improves the design efficiency.It is widely applicable to the liquid cooling components with similar structural features manufactured by other welding techniques.
作者 宋奎晶 董志波 李洋 方坤 李冬梅 朱帅 吕磊 罗俊睿 SONG Kuijing;DONG Zhibo;LI Yang;FANG Kun;LI Dongmei;ZHU Shuai;LV Lei;LUO Junrui(School of Materials Science and Engineering,Hefei University of Technology,Hefei 230009,China;State Key Laboratory of Advanced Welding and Joining,Harbin Institute of Technology,Harbin 150001,China;The 38th Research Institute of CETC,Hefei 230088,China)
出处 《电子机械工程》 2020年第2期30-33,共4页 Electro-Mechanical Engineering
基金 中国博士后科学基金资助项目(2017M612064)。
关键词 铝合金 液冷流道 搅拌摩擦焊 力学模型 aluminum alloy liquid cooling channel friction stir welding mechanical model
  • 相关文献

参考文献7

二级参考文献24

  • 1杨冬梅,徐德好.液冷冷板的研究[J].电子机械工程,2006,22(1):4-6. 被引量:28
  • 2张光义.相控阵雷达系统[M].北京:国防工业出版社,1994.1-29.
  • 3余建祖.电子设备热设计及分析技术[M].北京:北京航空航天大学出版社,2000:46-55
  • 4张鸣远.流体力学[M].北京:高等教育出版社,2009:334-336.
  • 5JOHNSON S T. Analysis of manifold fluid flow networks for airand liquid flow through modular electronics [ C]// SeventeenthIEEE SEMI-THERM Symposium. California, USA: 2001.
  • 6张跃毅.GJB 6100—2007军用航空冷却液规范[S].北京:中国人民解放军总装备部,2007.
  • 7YOVANOVICH M M. Four decades of research on thermalcontact, gap, and joint resistance in microelectronics [ J].IEEE Transactions on Component Packaging Thechnology,2005 , 28(2) :182-206.
  • 8NOWELL D. HILLS D A. Mechanics of fretting fatigue tests[J]. International Journal of Mechanical Sciences, 1987, 29(5) :355 - 365.
  • 9SZOLWINSKI M P, HARISH G, FARRIS T N. Comparison of fretting fatigue crack nucleation, experiments to multiaxial fatigue theory life predictions[C]//Proceedings of the ASME Symposium on High Cycle Fatigue. Dallas, US , 1997:449-457.
  • 10SZOLWINSKI M P, FARRISs T N. Mechanics of fretting fatigue crack formulation[J]. Wear, 1996, 198(1) : 93 - 107.

共引文献30

同被引文献29

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部