摘要
高校各类管理系统在进入相应的功能模块之前,进行安全认证是必不可少的环节之一。针对高校学生管理系统身份安全认证模块存在多处重复建设的问题,文中设计了一种基于人脸识别和生物特征识别的学生安全认证系统。该系统基于DCNN搭建卷积神经网络快速准备识别人脸,同时使用生物特征作为候选方案,为第三方场景构建了有效的安全认证系统,同时具备了一定的预警和结果统计能力,且系统的扩展和兼容性良好。测试结果表明,系统运行稳定,在1 s内即可以完成响应,识别精度可达99%以上,其功能设计可以较好地满足各类通用身份验证场景的需要。
The identity security authentication module of university student management system has many problems of repeated construction,and security is an important index to measure the stability of computer system.In order to solve these problems,this paper designs a student security authentication system based on face recognition and biometric recognition.This system is based on DCNN to build convolutional neural network to quickly prepare for face recognition.At the same time,it uses biometrics as a candidate scheme to build an effective security authentication system for the third⁃party scene.At the same time,it prepares certain early warning and result statistics capabilities,and the system has good expansion and compatibility.The test results show that the system runs stably,can complete the response within 1 s,and the recognition accuracy can reach more than 99%.Its functional design can better meet the needs of all kinds of general authentication scenarios.
作者
毛俊杰
刘鹏
李昌锋
MAO Jun-jie;LIU Peng;LI Chang-feng(Shaanxi Vocational and Technical College of Railway Engineering,Weinan 714000,China)
出处
《电子设计工程》
2020年第12期30-34,共5页
Electronic Design Engineering
基金
陕西省教育厅专项科研课题(17JK0168)
陕西省2018年高校辅导员工作研究课题(2018FKT31)。