摘要
主要研究带可乘白噪声的非自治随机Schrödinger格点系统,证明其存在随机指数吸引子.根据随机指数吸引子的存在性判据,首先,利用Ornstein-Uhlenbeck过程将系统转化成带随机参数而无白噪声的系统;其次,分解系统两解之差成2个部分,并估计某些随机变量的期望;最后,得到系统的随机指数吸引子的存在性.研究结果表明:所研究的系统的解的极限行为可用有限个参数来刻画.
It was mainly studied the existence of a random exponential attractor for non-autonomous Schrödinger lattice system with multiplicative white noise.According to the criteria of existence of a random exponential attractor,the objective stochastic system was transferred into a random system with random coefficients without noise through the Ornstein-Uhlenbeck process.Then it was decomposed the difference between two solutions into two parts,and estimated the expectations of some random variables.Finally,the existence of a random exponential attractor of the system was obtained.The results showed that the discussed limit behavior of the solution of the stochastic system coulde be characterized by finite parameters.
作者
江旭莹
周盛凡
韩宗飞
JIANG Xuying;ZHOU Shengfan;HAN Zongfei(College of Mathematics and Computer Science,Zhejiang Normal University,Jinhua 321004,China)
出处
《浙江师范大学学报(自然科学版)》
CAS
2020年第3期251-258,共8页
Journal of Zhejiang Normal University:Natural Sciences
基金
国家自然科学基金资助项目(11871437)。