期刊文献+

带可乘白噪声的非自治Schrödinger格点系统的随机指数吸引子 被引量:2

Random exponential attractor for non-autonomous Schrödinger lattice system with multiplicative white noise
下载PDF
导出
摘要 主要研究带可乘白噪声的非自治随机Schrödinger格点系统,证明其存在随机指数吸引子.根据随机指数吸引子的存在性判据,首先,利用Ornstein-Uhlenbeck过程将系统转化成带随机参数而无白噪声的系统;其次,分解系统两解之差成2个部分,并估计某些随机变量的期望;最后,得到系统的随机指数吸引子的存在性.研究结果表明:所研究的系统的解的极限行为可用有限个参数来刻画. It was mainly studied the existence of a random exponential attractor for non-autonomous Schrödinger lattice system with multiplicative white noise.According to the criteria of existence of a random exponential attractor,the objective stochastic system was transferred into a random system with random coefficients without noise through the Ornstein-Uhlenbeck process.Then it was decomposed the difference between two solutions into two parts,and estimated the expectations of some random variables.Finally,the existence of a random exponential attractor of the system was obtained.The results showed that the discussed limit behavior of the solution of the stochastic system coulde be characterized by finite parameters.
作者 江旭莹 周盛凡 韩宗飞 JIANG Xuying;ZHOU Shengfan;HAN Zongfei(College of Mathematics and Computer Science,Zhejiang Normal University,Jinhua 321004,China)
出处 《浙江师范大学学报(自然科学版)》 CAS 2020年第3期251-258,共8页 Journal of Zhejiang Normal University:Natural Sciences
基金 国家自然科学基金资助项目(11871437)。
关键词 Schrödinger格点系统 可乘白噪声 随机指数吸引子 连续余圈 Schrödinger lattice system multiplicative white noise random exponential attractor continuous cocycle
  • 相关文献

参考文献5

二级参考文献11

  • 1Caraballo T., Real, J. Attractors for 2D-Navier-Stokes models with delays. J. Diff. Eqns, 205:271-297 (2004).
  • 2Chepyzhov, V.V., Vishik, M.I. Attractors for equations of mathematical physics. AMS Colloquium Publications, 49. AMS, Providence, RI., 2002.
  • 3Hale, J.K. Theorey of functional differential equations. Springer-Verlag, New York, 1977.
  • 4Hines C. Upper semicontinuity of the attractor with respect to parameter dependent delays. J. Diff.. Eqns.. 123:56-92 (1995).
  • 5Karachalios, N., Yannacopoulos, A. Global existence and compact attractros for the discrete nonlinear Schrodinger equation. J. Diff. Eqns., 217:88-123 (2005).
  • 6Temam, R. Infinite-dimensional dynamical systems in mechaics and physics. App1. Math. Scf., 68, Springer-Verlag, Berlin, 2nd ed., 1997.
  • 7Wu, J. Theory and applications of partial functional-diffrential equations. Applied Mathematical Sciences, 119, Springer-Verlag, New York, 1996.
  • 8Zhao, C., Zhou, S. Attractors for retarded first order lattice systems. Nonlinearity, 20:1987-2006 (2007).
  • 9赵才地,周盛凡.格点系统存在指数吸引子的充分条件及应用[J].数学学报(中文版),2010,53(2):233-242. 被引量:7
  • 10Tao Chen,Sheng-fan Zhou,Cai-di Zhao.Attractors for Discrete Nonlinear Schrdinger Equation with Delay[J].Acta Mathematicae Applicatae Sinica,2010,26(4):633-642. 被引量:9

共引文献9

同被引文献6

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部