期刊文献+

基于残差学习的多阶段图像压缩感知神经网络 被引量:3

Multistage Image Compressive Sensing Neural Network Based on Residual Learning
下载PDF
导出
摘要 在传统的图像压缩感知研究中存在两个主要问题:在采样端,传统的线性采样方式存在一定程度的局限性;在重构端,传统的优化重构算法有着高耗时的缺陷。新发展的图像压缩感知神经网络框架虽然很好地解决了重构速度问题,但重构效果一般。为了解决上述问题,文中提出一种基于残差学习的多阶段图像压缩感知网络——MSResICS,其中具体包含3个子网络:采样子网络,初始重构子网络与图像增强子网络。在观测端,提出的非线性采样子网络,利用残差学习打破了传统采样方法的局限性,在采样值中保留了更加丰富的图像信息;在重构端,通过引入插值卷积,初始重构子网络从采样值中进行特征整合以获取质量优良的初始重构图像,最终利用残差学习与插值卷积,提出多阶段图像增强子网络以进一步细化重建图像,提升最终效果。大量仿真实验结果表明,与现有最优的图像压缩感知重构算法相比,MSResICS拥有更加优良的图像压缩感知重构精度。 There are two main problems in traditional Image Compressive Sensing(ICS):in sampling aspect,traditional linear sampling methods have some limitations;in reconstruction aspect,optimization-based reconstruction methods are highly time-consuming.Newly proposed ICS Neural Network can successfully deal with the speed problem in reconstruction,but lacks the accuracy of traditional algorithms.To solve this problem,a novel multistage ICS network based on residual learning(MSResICS)was proposed.It consists of three sub-networks,namely,sampling sub-network,initial reconstruction sub-network,and image enhancement sub-network.In sampling stage,with the help of residual learning,a nonlinear sampling sub-network was designed,which breaks the limitation of conventional sampling method and retains richer image information in samples.In reconstruction stage,the initial reconstruction sub-network extracts features from samples and obtain an initial reconstructed image of high quality by introducing interpolation convolution.With residual learning and interpolation convolution,a multistage image enhancing sub-network was proposed to further refine the reconstruction image and improve the quality of final result.Extensive simulations show that MSResICS has a better reconstruction accuracy than the existing optimal ICS reconstruction methods.
作者 杨春玲 裴翰奇 YANG Chunling;PEI Hanqi(School of Electronic and Information Engineering,South China University of Technology,Guangzhou 510640,Guandong,China)
出处 《华南理工大学学报(自然科学版)》 EI CAS CSCD 北大核心 2020年第5期82-91,共10页 Journal of South China University of Technology(Natural Science Edition)
基金 广东省自然科学基金资助项目(2017A030311028,2016A030313455)。
关键词 图像压缩感知 残差学习 深度网络 采样机制 image compressive sensing residual learning deep network sampling mechanism
  • 相关文献

参考文献2

二级参考文献85

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献731

同被引文献31

引证文献3

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部