期刊文献+

基于支持向量回归的地铁进站客流短时预测模型 被引量:8

Short-term Prediction Model of Subway Entry Passenger Flow Based on Support Vector Regression
下载PDF
导出
摘要 基于准确的未来客流信息对地铁运营的重要性,研究客流预测的方法。选取支持向量机应用领域的一大分支——支持向量回归的方法对地铁进站客流进行短时预测,使用一种改进的粒子群算法进行参数寻优,从而构建客流预测模型。提出的模型以日期类型和所处时刻作为输入,可以提前预测未来一周的每15 min的客流。采取平均绝对百分比误差和均方根误差对模型的预测结果进行评估。使用广州杨箕车站进站客流数据进行实验,通过交叉验证确定验证参数选取的合理性,并将该模型与BP神经网络、KNN算法进行比较,实验表明模型预测结果的精度更高,稳定性更好。 A method of passenger flow prediction was studied because of the importance of accurate future passenger flow information to subway operations.A large branch of the application of a support vector machine,support vector regression,was selected for short-term prediction of subway entry passenger flow.By using an improved basic particle swarm optimization algorithm for parameter optimization,a passenger flow prediction model was constructed.The model proposed takes the date type and the time of the moment as input and can predict the passenger flow for every 15 min.The mean absolute percentage error and root mean square error were applied to evaluate the model's predictions.Experiments based on passenger flow data from Guangzhou Yangji Station were carried out,and the rationality of parameter selection was determined and verified by cross validation.Compared with the backpropagation neural network and k-nearest-neighbors algorithm,the proposed model has higher accuracy and better stability.
作者 谢臻 郭建媛 秦勇 XIE Zhen;GUO Jianyuan;QIN Yong(State Key Laboratory of Rail Traffic Control and Safety,Beijing Jiaotong University,Beijing 100044;School of Traffic and Transportation,Beijing Jiaotong University,Beijing 100044)
出处 《都市快轨交通》 北大核心 2020年第2期82-86,共5页 Urban Rapid Rail Transit
基金 十三五国家重点研发计划(2016YFB1200402) 广州地铁城市轨道交通系统安全与运维保障国家工程实验室支持。
关键词 城市轨道交通 客流预测 支持向量回归 粒子群算法 urban rail transit passenger flow prediction support vector regression particle swarm optimization
  • 相关文献

参考文献7

二级参考文献56

  • 1高宁,张建中.MATLAB在RBF神经网络模型中的应用[J].农业网络信息,2009(2):110-111. 被引量:18
  • 2郭义荣,张晓栋,董宝田,吴蕾.基于模糊理论的交通状态快速识别与跃迁转变方法[J].中南大学学报(自然科学版),2013,44(S1):1-5. 被引量:3
  • 3梁青槐.城市轨道交通客流预测问题分析及建议[J].都市快轨交通,2005,18(1):37-41. 被引量:34
  • 4沈景炎.城市轨道交通线网规划与客流预测[J].都市快轨交通,2007,20(1):2-6. 被引量:43
  • 5[1]Vapnik V.An Overview of Statistical Learning Theory.IEEE Trans. Neural Networks,1999,10(5):988-999
  • 6[2]Pontil M,Verri A.Support Vector Machines for 3D Object Recognition. IEEE Tran. Pattern Analysis and Machine Intelligence,1998,20(6):637
  • 7[3]Burges C J C.A Tutorial on Support Vector Machines for Pattern Recognition.Data Mining and Knowledge Discovery,1998,2:121-167
  • 8[4]Platt J C.Sequential Minimal Optimization:A Fast Algorithm for Training Support Vector Machines.Microsoft Research Tech. Report MSR-TR-98-14,1998-04-21
  • 9Van der Zijpp N J, De Romph E D. A dynamic traffic forecasting application on the amsterdam beltway [ J ]. International Journal of Forecasting, 1977 ( 13 ) : 87 - 103.
  • 10Yin H, Wong S C, Xu J, et al. Urban traffic flow prediction using a fuzzy-neural approach [ J ]. Transportation Research Part C ,2002(10) :85 - 98.

共引文献157

同被引文献60

引证文献8

二级引证文献45

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部