期刊导航
期刊开放获取
河南省图书馆
退出
期刊文献
+
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
任意字段
题名或关键词
题名
关键词
文摘
作者
第一作者
机构
刊名
分类号
参考文献
作者简介
基金资助
栏目信息
检索
高级检索
期刊导航
初中数学几何最值问题探究——以“将军饮马”问题模型的解题策略为例
被引量:
8
下载PDF
职称材料
导出
摘要
几何最值问题是初中数学常见的问题类型,涉及众多知识点,问题形式也较为多变.该类问题的求解需要把握常见的问题模型,理解问题本质,结合相关知识来合理转化.文章对几何最值问题加以探究,解读基本模型,探究典型问题,提出相应的学习建议.
作者
丁力
机构地区
山东省青岛西海岸新区六汪初级中学
出处
《数学教学通讯》
2020年第14期79-80,共2页
Correspondence of the Teaching of Mathematics
关键词
几何
最值
模型
将军饮马
线段和
分类号
G634.6 [文化科学—教育学]
引文网络
相关文献
节点文献
二级参考文献
0
参考文献
0
共引文献
0
同被引文献
21
引证文献
8
二级引证文献
7
同被引文献
21
1
朱俊艺.
从“未能事人,焉能事鬼”探析孔子的鬼神观[J]
.南京大学学报(哲学.人文科学.社会科学),2012,49(2):104-112.
被引量:8
2
王亚军.
道教之万物生成论探析——从“道生一,一生二,二生三”说起[J]
.山东广播电视大学学报,2014(1):77-79.
被引量:4
3
张伟俊.
“综合与实践”课的教学探索与实施建议——以“探究最短路径问题”为例[J]
.中国数学教育(初中版),2015(6):11-14.
被引量:8
4
初中数学二次函数的最值问题求解分析[J]
.数理化解题研究(初中版),2016(7):28-28.
被引量:4
5
钟思聪.
毋意,毋必,毋固,毋我——美术教育目标的体现[J]
.美术大观,2016(8):155-155.
被引量:1
6
陈秀燕.
哲学三问下教学价值的提升[J]
.中学语文教学参考,2016,0(11):14-15.
被引量:1
7
贺政刚,孔德宏.
配方法在二元二次函数最值问题中的应用[J]
.中等数学,2017,0(5):18-20.
被引量:3
8
秦爱平.
例说求解抛物线最值问题的转化策略[J]
.初中数学教与学,2017(9):8-9.
被引量:2
9
张宁.
二次函数最值问题的常用求解策略[J]
.数理化学习,2018(3):23-27.
被引量:4
10
黄致和.
初中数学二次函数中最值问题的思考研究[J]
.中学课程辅导(上旬刊),2018(12):163-163.
被引量:2
引证文献
8
1
王铂韬,王新年.
哲学“三问”教学法探究[J]
.教育教学论坛,2021(32):168-171.
2
王军南.
二次函数最值题型的归类及突破[J]
.数学学习与研究,2021(35):128-130.
被引量:1
3
张佳萍.
基于自编游戏情境的初中数学教学设计与反思--以“最短路径问题”为例[J]
.数学教学通讯,2022(5):34-35.
被引量:2
4
雷淑华.
面积问题归本质 函数最值细探究——以2021年陕西中考第26题为例[J]
.数学教学通讯,2022(20):71-73.
5
田海霞.
初中数学几何图形中有关最值问题的解题思路分析[J]
.数学学习与研究,2022(25):155-157.
被引量:3
6
张晓.
二次函数中三角形面积最值问题的解题策略[J]
.数理天地(初中版),2023(1):54-56.
7
李传煜.
巧用“将军饮马”模型求解最值问题[J]
.中学数学,2024(2):74-75.
被引量:1
8
胥凤霞.
例谈初中数学几何最值问题的两种解题思路[J]
.数理天地(初中版),2024(5):24-25.
被引量:1
二级引证文献
7
1
薛青芸.
初中数学解题后的反思策略研究[J]
.新课程教学(电子版),2022(8):32-33.
被引量:1
2
代宁.
二次函数最值问题的思路探析[J]
.数理化解题研究,2023(11):2-4.
被引量:1
3
贾春千.
例析几何图形中最值问题的不同题型及解答思路[J]
.数理天地(初中版),2023(19):16-17.
4
林越.
初中数学圆中最值问题解题技巧的探究[J]
.数理化解题研究,2023(32):44-46.
被引量:5
5
龙昊,王珏,周晶.
基于贪心策略的改进动态搜索方法在武器目标分配中的应用[J]
.舰船电子工程,2024,44(3):18-21.
6
过锋.
初中数学最值问题的解法[J]
.中学数学,2024(16):99-100.
7
王晓隽.
中考最值问题的几种模型及其解题策略[J]
.数学学习与研究,2024(23):158-160.
1
刘继华.
将军饮马基本模型及其应用[J]
.初中数学教与学,2020(5):18-19.
被引量:1
2
赖志萍,王海青.
从“将军饮马”问题谈起[J]
.中学数学研究(华南师范大学)(下半月),2020(5):13-14.
3
于亦香.
解决与圆有关的向量问题的策略[J]
.理科考试研究,2020,27(9):28-29.
4
陈江波,于景洋.
党的十九届四中全会精神融入“概论”课教学的几个问题[J]
.高校马克思主义理论研究,2019,5(4):164-172.
被引量:1
5
刘慧磊.
钛合金Ti-6Al-4V切削仿真温度分析[J]
.科技创新导报,2020,17(5):96-98.
被引量:6
数学教学通讯
2020年 第14期
职称评审材料打包下载
相关作者
内容加载中请稍等...
相关机构
内容加载中请稍等...
相关主题
内容加载中请稍等...
浏览历史
内容加载中请稍等...
;
用户登录
登录
IP登录
使用帮助
返回顶部