期刊文献+

基于混合编码的射频识别无芯片标签设计

Design of Chipless RFID Tag Based on Hybrid Coding
下载PDF
导出
摘要 为降低传统射频识别标签成本,提升标签编码容量,文中采用幅值与频率位置混合编码的方法,设计了一种由微带主传输线、收发正交的超宽带天线和长度不等的谐振器组成的,具有大容量编码功能的无芯片射频识别标签。仿真及测试结果表明,该标签在2.37~6.17 GHz频段上得到了20 bit的编码容量,混合编码后可得到60 bit的编码容量。实测3种编码状态的8 bit无芯片标签,显示谐振器频点误差小于10 MHz,能够保证谐振点的准确识别,实现预设的编码功能。该种具有大容量编码功能无芯片标签,降低了物联网系统的成本,可以取代激光条形码应用于物流领域。 In order to reduce the cost of traditional RFID tags and improve the tag coding capacity,by using the method of mixed coding of amplitude and frequency position,a chipless RFID tag with large capacity coding function was designed,which was composed of microstrip main transmission line,ultra-wideband antenna with orthogonal transceiver and resonator with different length.Simulation and test results showed that in the 2.37~6.17 GHz frequency band,the encoding capacity of 20 bit could be obtained,and the encoding capacity of 60 bits could be obtained after mixed encoding.The 8 bit chip-less label of the three coding states measured in the field showed that the position of the resonance point only fluctuates within a small range of 10 MHz,which ensured the accurate identification of the resonance point and realized the preset coding function.This kind of chipless label with large capacity coding function could reduce the cost of the IOT system and replace the laser bar code in the field of logistics.
作者 孙海静 陈强 杨娇 周玲 SUN Haijing;CHEN Qiang;YANG Jiao;ZHOU Ling(School of Electronic and Electric Engineering,Shanghai University of Engineering Science,Shanghai 201620,China)
出处 《电子科技》 2020年第6期8-12,共5页 Electronic Science and Technology
基金 国家自然科学基金(61272097) 上海市科技委员会重点项目(18511101600)。
关键词 无芯片标签 螺旋型谐振器 混合编码 谐振频率 物联网 射频识别 chipless tag helical resonator hybrid coding resonant frequency internet of things radio frequency identification
  • 相关文献

参考文献2

二级参考文献94

  • 1Presser M, Barnaghi P M, Eurich M, Villalonga C. The SENSEI project: Integrating the physical world with the digital world of the network of the future. Global Communi- cations Newsletter, 2009, 47(4) : 1-4.
  • 2Walewski J W. Initial architectural reference model for IoT. EU FP7 Project, Deliverable Report: D1.2, 2011.
  • 3Sarma S, Brock D L, Ashton K. The networked physical world Proposals for engineering the next generation of com- puting, commerce automatic-identification. MIT Auto-lD Center, White Paper: MIT-AUTOID-WH-001, 2010.
  • 4Koshizuka N, Sakamura K. Ubiquitous ID: Standards for ubiquitous computing and the Internet of Things. IEEE Pervasive Computing, 2010, 9(4): 98-101.
  • 5Electronics and Telecommunication Research Institute (ETRI) of the Republic of Korea. Requirements for support of USN applications and services in NGN environment// Proceedings of the ITU NGN Global Standards Initiative (NGN-GSI) Rapporteur Group Meeting. Geneva, Switzerland, 2007:11-21.
  • 6Vicaire P A, Xie Z, Hoque E, Stankovic J A. Physicalnet: A generic framework for managing and programming across pervasive computing networks. University of Virginia: Technical Report CS-2008-2, 2008.
  • 7ETSI. Machine to Machine communications (M2M) Func- tional architecture. ETSI, Technical Specification: 102 690 V1.1.1, 2011.
  • 8Pujotle G. An autonomic-oriented architecture for the Inter net of Things//Proceedings of the IEEE John Vincent Atana- soff 2006 International Symposium on Modern Computing (JVA). Sofia, Bulgaria, 2006:163-168.
  • 9Armen F, Barthel H, Burstein Let al. The EPCglobal Architecture Framework. EPCglobal, Standard Specification: Final Version 1.3, 2009.
  • 10OASIS WS-DD Technical Committee. Devices Profile for Web Services. OASIS, Standard: Version 1.1, 2009.

共引文献313

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部