期刊文献+

因子von Neumann代数上的非线性中心化子 被引量:7

Nonlinear centralizers on factor von Neumann algebras
下载PDF
导出
摘要 设m,n是任意非零整数,且满足(m+n)(m-n)≠0,M是实或复数域F上的Hilbert空间上的一个因子von Neumann代数.利用代数分解方法证明了M上满足2mφ(AB)+2nφ(BA)=mφ(A)B+mAφ(B)+nφ(B)A+nBφ(A)的非线性映射φ为可加中心化子,并刻画出具体形式φ:A→λA(λ∈F,■A∈M). Let m,n be non-zero integers with(m+n)(m-n)≠0,M be a factor von Neumann algebra on Hilbert spaces H over the real or complex field F andφbe a nonlinear map from M into itself.By using the algebraic decomposion on M,it is showed that ifφsatisfies 2mφ(AB)+2nφ(BA)=mφ(A)B+mAφ(B)+nφ(B)A+nBφ(A)for all A,B∈M,then the map is an additive centralizer and we characterize the concrete form:there exists aλ∈F such thatφ:A→λA for all A∈M.
作者 杨翠 吴冰 刘珍 YANG Cui;WU Bing;LIU Zhen(School of Information Technology, Hebei Polytechnic Institute, Shijiazhuang 050091, China;School of Mathematics and Statistics, Kashgar University, Kashgar, Xinjiang 844000, China)
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第3期352-355,共4页 Journal of Central China Normal University:Natural Sciences
基金 新疆维吾尔自治区自然科学基金项目(2019D01A04)。
关键词 因子von NEUMANN代数 中心化子 非线性映射 factor von Neumann algebra centralizer nonlinear map
  • 相关文献

参考文献4

二级参考文献46

  • 1Beidar K. I., Martindal III W. S., Mikhalev A. V., Rings with generalized identities, New York: Marcel Dekker Inc., 1996.
  • 2Zalar B., On centralizers of semiprime rings, Comment. Math. Univ. Carolin., 1991, 32: 609-614.
  • 3Benkovic D., Eremita D., Characterizing left centralizers by their action on a polynomial, Publ. Math. Debrecen., to appear.
  • 4Molnar L., On centralizers of an H^*-algebra, Publ. Math. Debrecen, 1995, 46: 89-95.
  • 5Vukman J., Kosi-Ulbl I., On centralizers of semiprime rings, Aequationes Math., 2003, 66: 277-283.
  • 6Vukman J., Kosi-Ulbl I., Centralisers on rings and algebras, Bull. Austral. Math. Soc., 2005, 71: 225-234.
  • 7Bresar M., Centralizing mappings on von Neumann algebras, Proc. Amer. Math. Soc. 1991,III: 501-510.
  • 8Bresar M., Centralizing mappings and derivations in prime rings, J. Algera, 1993, 156: 385-394.
  • 9Bresar M., On a generalization of the notion of centralizing mappings, Proc. Amer. Math. Soc., 1992, 114: 641-649.
  • 10Bregar, M.: Characterizing homomorphisms, derivations, and multipliers in rings with idempotents. Proc Roy. Soc. Edinburgh. Sect A, 137, 9-21 (2007).

共引文献21

同被引文献23

引证文献7

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部