期刊文献+

面向输电线路的压缩感知图像去噪方法 被引量:2

Compressed sensing image denoising method for transmission lines
下载PDF
导出
摘要 传统的基于字典学习的输电线路图像去噪方法,易受冗余字典影响存在重建图像边缘细节恢复不足的问题.为了有效抑制输电线路图像表面存在的高斯噪声,提出一种图像非局部自相似特性与改进K-SVD字典学习算法融合的输电线路图像去噪方法,利用图像非局部自相似性作为正则项约束并加权稀疏表达模型,提高去噪图像复原和保留细节的能力.实验选取含有自然图像和输电线路典型缺陷图像进行仿真实验测试.实验结果表明,所提出的算法不仅能够很好的保留图像纹理特征与边缘细节,对高斯噪声也具有良好的鲁棒性. The traditional dictionary-based signal line denoising method for transmission lines is vulnerable to the redundancy dictionary and causes insufficient restoration of the edge details of reconstructed images.In order to filter out the Gaussian noise existing on the surface of transmission line image effectively,an image denoising method combining non-local self-similarity of image and K-SVD(K-means and Singular Value Decomposition)dictionary learning algorithm is proposed.Similarity is used as a regular term constraint and weighted processing to improve the quality of denoising image restoration.The experiment selects several typical defects(broken strands,wear,bubbles)of the transmission line for simulation test.The experimental results show that the proposed algorithm can not only preserve the image texture features and edge details,but also has good robustness to Gaussian noise.
作者 王娟 姜玉菡 陈泽昊 武明虎 丁畅 曾春艳 袁旭亮 WANG Juan;JIANG Yuhan;CHEN Zehao;WU Minghu;DING Chang;ZENG Chunyan;YUAN Xuliang(Hubei Power Grid Intelligent Control and Equipment Engineering Technology Research Center, Hubei University of Technology, Wuhan 430068, China;Hubei Key Laboratory for High-efficiency Utilization of Solar Energy and Operation Control of Energy Storage System, Hubei University of Technology, Wuhan 430068, China)
出处 《华中师范大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第3期376-383,共8页 Journal of Central China Normal University:Natural Sciences
基金 国家自然科学基金青年科学基金项目(61901165) 湖北省自然科学基金项目(2019CFB530)。
关键词 K-SVD算法 非局部自相似性 高斯噪声 滤波 输电线路缺陷 K-SVD algorithm non-local self-similarity Gaussian noise filtering transmission line defect
  • 相关文献

参考文献2

二级参考文献30

  • 1王建英,尹忠科.基于稀疏分解的微弱信号检测方法[J].铁道学报,2007,29(2):114-117. 被引量:10
  • 2Abdallah S A, Plumbley M D. Unsupervised analysis of polyphonic music by sparse coding [J].IEEE Transactions on Neural Networks, 2006, 17 ( 1 ) : 179- 196.
  • 3Malioutov D M, Cetin M, Willsky A S. A sparse signal reconstruction perspective for source localization with sensor arrays[J]. IEEE Transactions on Signal Processing, 2005, 53(8) :3010-3022.
  • 4Liu H H, Schimpf P H, Dong G Y. Standardized shrinking LORETA-FOCUSS (SSLOFO) : A new algorithm for spatio-temporal EEG source reconstruc-tion [J].IEEE Transactions on Biomedical Engineering, 2005, 52(10):1681-1691.
  • 5Chen S, Donoho D L, Saunders M A. Atomic decomposition by basis pursuit [J]. SIAM Review, 2001, 43(1): 129-159.
  • 6Yeste-Ojeda O A, Grajal J. Atomic decomposition for ISAR imaging [C-]//IEEE Conference on Radar. [s. l. ]:IEEE, 2006: 504-509.
  • 7Mallat S, Zhang Z. Matching pursuits with time-frequency dictionaries [J]. IEEE Transactions on Signal Processing, 1993,41(12) : 3397-3415.
  • 8Donoho D L, Huo X. Uncertainty principles and ideal atomic decomposition [J]. IEEE Transactions on Information Theory, 2001, 47(7) :2845-2862.
  • 9Donoho D L. Wedgelets: Nearly-minimax estimation of edges [J]. The Annals of Statistics, 1999, 27 (3) : 959-897.
  • 10Huber P J. Projection pursuit [J]. The Annals of Statistics, 1985, 13(2) :435-475.

共引文献76

同被引文献18

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部