期刊文献+

排放控制区政策下船舶辅机大气污染物排放特征研究 被引量:4

Emission characteristics of air pollutants from marine auxiliaries under ECA policy
原文传递
导出
摘要 船舶运输业蓬勃发展的同时,也向大气中排放了大量有害气体.为此我国制定了分阶段实施的船舶排放控制区政策,以期通过限制燃油含硫量控制船舶大气污染问题.本研究于2016年和2018年在排放控制区政策实施前后,连续对A船和B船2艘万吨级航海船进行登船实测,使用"碳平衡法"计算了船舶尾气中各类污染物基于燃油消耗量的排放因子.结果表明,A船、B船由使用含硫量为2.20%和2.10%的燃油转为使用含硫量为0.470%和0.003%的燃油后,SO2排放因子分别由44.00 g·kg^-1和42.00 g·kg^-1下降到9.40 g·kg^-1和0.80 g·kg^-1,PM2.5排放因子分别由2.44 g·kg^-1和1.02 g·kg^-1下降到0.870 g·kg^-1和0.003 g·kg^-1,TVOC排放因子则分别由0.061 g·kg^-1和0.106 g·kg^-1升高到0.292 g·kg^-1和0.706 g·kg^-1.对比使用不同含硫量燃油时船舶PM2.5的减排情况发现,现阶段以燃油含硫量≤0.5%为限值的排放控制区政策,以及即将推行的以燃油含硫量≤0.1%为限值的排放控制区政策都能有效地降低船舶颗粒物排放.在成分特征方面,转用含硫量更低的燃油后,A船、B船PM2.5中硫酸盐在水溶性离子中的占比分别由58.6%和44.3%下降到18.1%和7.9%;PM2.5中钒元素含量分别降低了82.5%和98.9%,镍元素含量分别降低了20.8%和98.5%;VOCs中烯烃占比分别提高了11.9%和19.3%,而芳香烃占比则分别下降了32.0%和4.5%.由于排放控制区政策实施以后,船舶排放的颗粒物中钒元素的含量大幅减少,钒元素将不再适合作为船舶大气污染示踪物. With the rapid development of ship transportation,a large number of harmful pollutants were discharged into the atmosphere.Therefore,China has formulated a phased implementation of emission control areas(ECA)to control the air pollution from ships.In 2016 and 2018,measurements have been carried out on board of two navigation ships before and after the implementation of ECA Policy.The fuel-based emission factors of the ships were calculated.The results showed that after conversion of fuel with Sulfur content of 2.20%and 2.10%to fuel with Sulfur content of 0.470%and 0.003%,the SO2 emission factors of ship A and ship B declined from 44.00 g·kg^-1 and 42.00 g·kg^-1 to 9.40 g·kg^-1 and 0.80 g·kg^-1 correspondingly.The PM2.5 emission factors reduction counted from ship A and ship B were 2.44 g·kg^-1 and 1.02 g·kg^-1 to 0.870 g·kg^-1 and 0.003 g·kg^-1 while TVOC emission factors enhanced from 0.061 g·kg^-1 and 0.106 g·kg^-1 to 0.292 g·kg^-1 and 0.706 g·kg^-1 respectively.Comparing the reduction of PM2.5 EFs under different fuels,we found that ECA Policy at this stage(fuel sulfur content≤0.5%)and in the next stage(fuel sulfur content≤0.1%)can both effectively reduce the emission of PM2.5 from the ships.In terms of composition characteristics,the proportion of sulfate in PM2.5 of ship A and ship B reduced from 58.6%and 44.3%to 18.1%and 7.9%correspondingly.The reduction in Vanadium content in PM2.5 was 82.5%and 98.9%,whereas Nickel decreased by 20.8%and 98.5%correspondingly.The alkene proportion in VOCs increased by 11.9%to 19.3%,while the proportion of aromatic decreased by 32.0%and 4.5%respectively.Since the implementation of ECA Policy,Vanadium discharged from ships has been significantly reduced and it is no longer suitable to perform as a tracer of air pollution from ships.
作者 陈鸿展 何俊杰 陈俊文 吴振锋 张艳利 王新明 李梅 吴海宁 CHEN Hongzhan;HE Junjie;CHEN Junwen;WU Zhenfeng;ZHANG Yanli;WANG Xinming;LI Mei;WU Haining(Guangzhou Environmental Monitoring Center,Guangzhou 510630;Guangzhou Institute of Geochemistry,Chinese Academy of Sciences,Guangzhou 510640;Institute of Mass Spectrometer and Atmospheric Environment,Jinan University,Guangzhou 510632;Guangdong Provincial Engineering Research Center for On⁃Line Source Apportionment System of Air Pollution,Guangzhou 510632;Guangzhou Maritime Safety Administration,Guangzhou 510260)
出处 《环境科学学报》 CAS CSCD 北大核心 2020年第6期1943-1950,共8页 Acta Scientiae Circumstantiae
基金 中国科学院战略性先导科技专项(A类)(No.XDA23010303) 国家自然科学基金(No.41673116,41571130031,21607056) 广州经济技术开发区国际科技合作项目(No.2018GH08)。
关键词 船舶 大气污染物 排放特征 排放控制区 ships air pollution emission characteristics emission control areas(ECA)
  • 相关文献

参考文献4

二级参考文献32

  • 1娄世松.石油中的镍钒存在形态及其脱除方法[J].石油化工腐蚀与防护,1996,13(4):30-32. 被引量:13
  • 2Yu X N, Zhu B, Yin Y, et al. A comparative analysis of aerosol properties in dust and haze-fog days in a Chinese urban region [J]. Atmospheric Research, 2011,99(2):241-247.
  • 3Liu S, Hu M, Slanina S, et al. Size distribution and source analysis of ionic compositions of aerosols in polluted periods at Xinken in Pearl River Delta (PRD) of China [J]. Atmospheric Environment, 2008,42(25):6284-6295.
  • 4Jung J S, Lee H, Kim Y J, et al. Aerosol chemistry and the effect of aerosol water content on visibility impairment and radiative forcing in Guangzhou during the 2006Pearl River Delta campaign [J]. Journal of Environ. Manage, 2009,90(11):3231-3244.
  • 5Tan J H, Duan J C, Chen D H, et al. Chemical characteristics of haze during summer and winter in Guangzhou [J]. Atmospheric Research, 2009,94(2):238-245.
  • 6Sun Y L, Zhuang G S, Tang A H, et al. Chemical characteristics of PMzsand PM10in haze-fog episodes in Beijing [J]. Environmental Scienc & Technology, 2006,40(10):3148-3155.
  • 7Zhuang H, Chan C K, Fang M, et al. Size distributions of particulate sulfate, nitrate, and ammonium at a coastal site in Hong Kong [J]. Atmospheric Environment, 1999,33(6):843-853.
  • 8Kim B G, Park S U. Transport and evolution of a winter-time yellow sand observed in Korea [J]. Atmospheric Environment, 2001.35(18):3191-3201.
  • 9Lu Q, Zheng J Y, Ye S Q, et al. Emission trends and source characteristics of SO2, NOx, PM10and VOCs in the Pearl River Delta region from 2000to 2009 [J]. Atmospheric Environment, 2013,76:11-20.
  • 10Meng Z Y, Seinfeld J H. Oi1 the source of the submicrometer droplet mode of urban and regional aerosols [J]. Aerosol Science and Technology, 1994,20(3):253-265.

共引文献35

同被引文献37

引证文献4

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部