期刊文献+

基于注意力机制和特征融合的手势识别方法 被引量:7

GESTURE RECOGNITION BASED ON ATTENTION MECHANISM AND FEATURE FUSION
下载PDF
导出
摘要 动态手势视频流预处理过程中,随机采样或密集采样存在关键帧丢失或数据冗余的问题,导致特征融合在单个特征的时序建模中,可能丢失重要的时序信息,由此提出基于注意力机制和特征融合的手势识别方法。通过含注意力机制的长短期记忆网络,在时序建模过程中抽取重要数据,有效避免了采样方法的随意性或盲目性;设计具有三层结构的特征融合网络对抽取的RGB特征和深度图像特征进行融合处理,提升了动态手势识别的准确率。实验结果表明引入注意力机制的必要性,验证了特征融合的有效性和该方法的鲁棒性。 In the preprocessing of dynamic gesture video stream,random or dense sampling may lead to key frames missing or data redundancy,resulting in feature fusion in the temporal modeling of single feature,and losing important temporal information.Therefore,we propose a gesture recognition method based on attention mechanism and feature fusion.The important data were extracted in the process of temporal modeling using the LSTM with attention mechanism which effectively avoided the randomness or blindness of the sampling method;a feature fusion network with three-layer structure was designed to fuse the extracted RGB features and depth image features,which improves the accuracy of dynamic gesture recognition.The experimental results show the necessity of introducing attention mechanism,and verify the effectiveness of feature fusion and the robustness of our method.
作者 高明柯 赵卓 逄涛 王天保 邹一波 黄晨 李德旭 Gao Mingke;Zhao Zhuo;Pang Tao;Wang Tianbao;Zou Yibo;Huang Chen;Li Dexu(The 32nd Research Institute,China Electronics Technology Group Corporation,Shanghai 201808,China;College of Information Technology,Shanghai Ocean University,Shanghai 201306,China;School of Computer Engineering and Science,Shanghai University,Shanghai 200444,China)
出处 《计算机应用与软件》 北大核心 2020年第6期199-203,共5页 Computer Applications and Software
基金 装备预研中国电科联合基金项目(6141B08080101) 上海海洋大学博士启动基金项目(A2-0203-00-100378)。
关键词 动态手势识别 注意力机制 特征融合 时序建模 双向长短期记忆网络 Dynamic gesture recognition Attention mechanism Feature fusion Temporal modeling Bidirectional LSTM
  • 相关文献

参考文献12

二级参考文献66

  • 1李瑞峰,曹雏清,王丽.基于深度图像和表观特征的手势识别[J].华中科技大学学报(自然科学版),2011,39(S2):88-91. 被引量:10
  • 2殷涛,葛元,王林泉.基于几何矩的字母手势识别算法[J].计算机工程,2004,30(18):127-129. 被引量:11
  • 3李振华,敬忠良,孙韶媛,刘刚.基于目标检测的红外和可见光动态图像融合[J].上海交通大学学报,2005,39(8):1304-1307. 被引量:11
  • 4曲延云,郑南宁,李翠华,袁泽剑,叶聪颖.基于支持向量机的显著性建筑物检测[J].计算机研究与发展,2007,44(1):141-147. 被引量:11
  • 5Song Dongjin, Tao Dacheng. Biologically inspired feature manifold for scene classification [J]. IENE Transactions on Image Processing, 2010, 19 ( 1 ) :174- 184.
  • 6Lowe D G. Distinctive image features from scale-invariant keypoints[J]. International Journal of Computer Vision, 2004, 60(2): 91-110.
  • 7Mikolajczyk K, Schmid C. Scale and affine invariant interest point detectors [J ]. International Journal of Computer Vision, 2004, 60(1): 63-86.
  • 8Harris C, Stephens M J. A combined corner and edge detector[C]//Proceedings of the 4th Alvey Vision Conference. Manchester, U K: [s. n.], 1988: 147- 151.
  • 9Kumar M P, Koller D. Efficiently selecting regions for scene understanding[C]//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. Piscataway, NJ, USA: IEEE, 2010: 3217- 3224.
  • 10Walther D, Koch C. Modeling attention to salient proto-objects [J]. Neural Networks, 2006, 19 (5) : 1395-1407.

共引文献163

同被引文献36

引证文献7

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部