摘要
提出了基于远场指标梯度的自适应光学闭环控制模型,该模型使用递归最小二乘来稳定响应矩阵,通过远场指标的梯度信息快速自学习当前的系统状态。结果表明:该模型具有在线实时更新的特点,能够自适应H-S子孔径缺光或质心探测不理想的状态,可在一定程度上改善控制性能。
In this study,we propose an adaptive optics closed-loop control model based on the far-field index gradient,which can be used to stabilize the response matrix based on the recursive least square values.Further,the current system state can be rapidly self-learned using the far-field index gradient.The experimental results denote that the proposed model exhibits real-time online update characteristics;furthermore,the proposed model can adapt to the state of H-S subaperture lack of light or non-ideal centroid detection,which improves the control performance to some extent.
作者
许振兴
杨平
程涛
许冰
李和平
Xu Zhenxing;Yang Ping;Cheng Tao;Xu Bing;Li Heping(Key Laboratory on Adaptive Optics,Chinese Academy of Sciences,Chengdu,Sichuan 610209,China;School of Optoelectronic Science and Engineering,University of Electronic Science and Technology of China,Chengdu,Sichuan 610054,China;Institute of Optics and Electronics,Chinese Academy of Sciences,Chengdu,Sichuan 610209,China;University of Chinese Academy of Sciences,Beijing 100049,China)
出处
《中国激光》
EI
CAS
CSCD
北大核心
2020年第4期209-216,共8页
Chinese Journal of Lasers
基金
国家自然科学基金(61805251,61875203)
中国科学院青年创新促进会资助项目(2017429)。
关键词
自适应光学
递归最小二乘
波前复原
远场指标
adaptive optics
recursive least squares
wavefront reconstruction
far-field indicator