期刊文献+

利用改进型AlexNet的ADS-B欺骗式干扰检测 被引量:5

ADS-B Spoofing Interference Detection Using Improved AlexNet
下载PDF
导出
摘要 广播式自动相关监视(ADS-B)是一种新的空管监视技术,遵循着“空地一体化”和“全球可互用”的指导原则,实现了航迹信息共享。但其开放式的架构特点,使其极易受到各类欺骗式的干扰,严重威胁空中交通安全。本文针对真实ADS-B信号的多普勒频偏变化规律与报告位置的变化规律相符合的特点,结合以深度学习为代表的机器学习方法,提出利用改进型的AlexNet提取特征并检测欺骗干扰。本方法对比传统的信号处理方法,减少了计算复杂度,提高了识别准确率,特别是在航迹长度较短时优势更加明显。仿真实验验证了方法的有效性。 Automatic Dependent Surveillance-Broadcast(ADS-B)technology is a new air traffic surveillance technology that follows the guiding principles of“air-ground integration”and“global interoperability”to achieve track information sharing.However,its open architecture makes it extremely vulnerable to a variety of spoofing attacks,which seriously threatens air traffic safety.In this paper,aiming at the characteristics of Doppler frequency offset variation of ADS-B message and the change rule of reporting position,combined with the machine learning method represented by deep learning,this paper proposes to use the improved AlexNet extraction feature and detect fraud interference.Compared with the traditional signal processing method,the method reduces the complexity of the algorithm and improves the recognition accuracy,especially when the track length is short.Simulation experiments verify the effectiveness of the method.
作者 王文益 吴庆 Wang Wenyi;Wu Qing(Tianjin Key Laboratory for Advanced Signal Processing, Civil Aviation University of China, Tianjin 300300, China)
出处 《信号处理》 CSCD 北大核心 2020年第5期741-747,共7页 Journal of Signal Processing
基金 国家自然科学基金项目(U1833112)。
关键词 广播式自动相关监视 欺骗式干扰 深度学习 改进型AlexNet automatic dependent surveillance-broadcast(ADS-B) spoofing attack deep learning improved AlexNet
  • 相关文献

参考文献5

二级参考文献30

  • 1南建设.信号细微特征分析技术研究[J].电讯技术,2007,47(2):68-71. 被引量:10
  • 2MarkoffJ. How many computers to identify a cat?[NJ The New York Times, 2012-06-25.
  • 3MarkoffJ. Scientists see promise in deep-learning programs[NJ. The New York Times, 2012-11-23.
  • 4李彦宏.2012百度年会主题报告:相信技术的力量[R].北京:百度,2013.
  • 510 Breakthrough Technologies 2013[N]. MIT Technology Review, 2013-04-23.
  • 6Rumelhart D, Hinton G, Williams R. Learning representations by back-propagating errors[J]. Nature. 1986, 323(6088): 533-536.
  • 7Hinton G, Salakhutdinov R. Reducing the dimensionality of data with neural networks[J]. Science. 2006, 313(504). Doi: 10. 1l26/science. 1127647.
  • 8Dahl G. Yu Dong, Deng u, et a1. Context-dependent pre?trained deep neural networks for large vocabulary speech recognition[J]. IEEE Trans on Audio, Speech, and Language Processing. 2012, 20 (1): 30-42.
  • 9Jaitly N. Nguyen P, Nguyen A, et a1. Application of pretrained deep neural networks to large vocabulary speech recognition[CJ //Proc of Interspeech , Grenoble, France: International Speech Communication Association, 2012.
  • 10LeCun y, Boser B, DenkerJ S. et a1. Backpropagation applied to handwritten zip code recognition[J]. Neural Computation, 1989, I: 541-551.

共引文献649

同被引文献44

引证文献5

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部