期刊文献+

Box-Behnken响应面法优化酶法制备α-环糊精及其分离纯化 被引量:2

Optimization of Enzymatic Preparation ofα-Cyclodextrin by Response Surface Methodology and Its Separation and Purification
下载PDF
导出
摘要 以α-环糊精葡萄糖基转移酶(α-cyclodextrin glycosyltransferase,α-CGTase)为催化剂,研究其作用于马铃薯淀粉产出α-环糊精的酶法生产工艺。通过单因素试验和Box-Behnken中心组合设计法设计响应面试验,分析不同条件对α-环糊精转化率的影响。试验结果表明,当α-CGTase的反应温度为50℃,pH值为5.5时,α-CGTase呈现最好的酶活性质,α-环糊精的转化率最高。反应体系中加入有机溶剂正癸醇,底物浓度为1.0%,加酶量为200 U/g淀粉,反应时间为14 h时,α-环糊精的转化率可达40.6%。通过水蒸气蒸馏法进一步分离纯化α-环糊精产物,经高效液相色谱法(high performance liquid chromatography,HPLC)鉴定分析,转化率可达到20%~40%,纯度达到75%。 Usingα-cyclodextrin glycosyltransferase(α-CGTase)as a catalyst,the enzymatic production process of potato starch to produceα-cyclodextrin was studied.The response surface test was designed by single factor test and box-behnken center combination design method to analyze the influence of different conditions on theα-cyclodextrin conversion rate.The experimental results showed that when the reaction temperature ofα-CGTase was 50℃and the pH value was 5.5,α-CGTase exhibited the best enzyme activity,and the conversion rate ofα-cyclodextrin was the highest.In the reaction system,the organic solvent n-decanol was added,the substrate concentration was 1.0%,the enzyme amount was 200 U/g starch,and the reaction time was 14 h.The conversion rate ofα-cyclodextrin could reach 40.6%.Theα-cyclodextrin product was further separated and purified by steam distillation.After identification and analysis by high performance liquid chromatography(HPLC),the conversion rate could reach 20%-40%and the purity could reach 75%.
作者 刘玉青 孟小兵 张小芳 施瑶 LIU Yu-qing;MENG Xiao-bing;ZHANG Xiao-fang;SHI Yao(Department of Food Engineering,Luohe Vocational College of Food,Luohe 462000,Henan,China)
出处 《食品研究与开发》 CAS 北大核心 2020年第13期139-145,共7页 Food Research and Development
关键词 环糊精 响应面 转化率 分离纯化 高效液相色谱法(HPLC) α-cyclodextrin response surface conversion rate separation and purification high performance liquid chromatography(HPLC)
  • 相关文献

参考文献9

二级参考文献92

  • 1陈龙然,袁康培,冯明光,王雅芬.一株产环糊精葡萄糖基转移酶的地衣芽孢杆菌的选育、产酶条件及酶学特性[J].微生物学报,2005,45(1):97-101. 被引量:20
  • 2田辉,杨国武,徐颐玲,谢伯泰.环状糊精与环状糊精葡萄糖基转移酶[J].工业微生物,1995,25(2):33-38. 被引量:16
  • 3李媛,李晶晶,胡本容,汤强,付琴,向继洲.三氧化二砷和维生素C联合诱导肝癌细胞凋亡的作用研究[J].医药导报,2006,25(1):3-5. 被引量:11
  • 4牛小斌.OLYMPUS AU640全自动生化分析仪异常结果标记符号的意义及处理[J].医疗装备,2006,19(12):42-42. 被引量:1
  • 5UITDEHAAG J, van der VEEN A, LUBBERT D, et al. Catalytic mechanism and product specificity of cyclodextrin glycosyltransferase, a prototypical transglycosylase from the or-amylase family[J]. Enzyme and Microbial Technology, 2002, 30(3): 295-304.
  • 6BENDER H. Production characterization and application of cyclodextrin [J]. Advances in Biotechnological Processes, 1986(6): 31-71.
  • 7PRAMILA R, SURESH C, NARASIMHA R D, et al. Digestion of residual β-cyclodextrin in treated egg using glucoamylase from a mutant strain of Aspergillus niger[J]. Food Chemistry, 1999, 65(3): 297- 301.
  • 8LI Zhaofeng, WANG Miao, WANG Feng, et al. Gamma-cyclodextrin: A review on enzymatic production and applications[J]. Appl Microbiol Biotechnol, 2007, 77(2): 245-255.
  • 9van der VEEN B A, UTTDEHAAG J C M, DIJKSTRA B W, et al. The role of arginine 47 in the cyclization and coupling reactions of cyclodextrin glycosyltransferase from Bacillus circulans strain 251 implications for product inhibition and product specificity[J]. Eur J Biochem, 2000, 267 (12): 3432-3441.
  • 10SIN K A, NAKAMURA A, MASAKI H, et al. Replacement of an amino acid residue ofcyclodextrin glucanotransferase of Bacillus ohbensis doubles the production of y-cyclodextrin[J]. J Biotechnol, 1994, 32(3): 283- 288.

共引文献27

同被引文献72

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部