摘要
对随机代数Riccati方程的条件数进行了研究,分别定义它的混合型、分量型及范数型条件数,并得到其显示表达式及上界.其次进行数值实验,验证了所提出的条件数能够给出比较好的误差界.
Conditional numbers can characterize the sensitivity of the solution to input data perturbation.In this paper,the condition numbers of stochastic algebraic Riccati equation are studied.The mixed,componentwise and normwise condition numbers are proposed,and their explicit expressions and easier computable upper bounds are derived.Finally,numerical experiments are carried out to show that the proposed condition numbers can give better error bounds.
作者
于清华
刁怀安
施丽娜
YU Qing-hua;DIAO Huai-an;SHI Li-na(School of Mathematics and Statistics,Northeast Normal University,Changchun 130024,China;Senior High School Department,Jilin Provincial Experimental School,Changchun 130021,China)
出处
《东北师大学报(自然科学版)》
CAS
北大核心
2020年第2期1-8,共8页
Journal of Northeast Normal University(Natural Science Edition)
基金
国家自然科学基金资助项目(11522105).
关键词
随机代数Riccati方程
条件数
分量型扰动
误差界
stochastic algebraic Riccati equation
condition number
componentwise perturbation
error bound