期刊文献+

联合低秩稀疏的多核子空间聚类算法 被引量:7

Joint low-rank and sparse multiple kernel subspace clustering algorithm
下载PDF
导出
摘要 针对多核子空间谱聚类算法没有考虑噪声和关系图结构的问题,提出了一种新的联合低秩稀疏的多核子空间聚类算法(JLSMKC)。首先,通过联合低秩与稀疏表示进行子空间学习,使关系图具有低秩和稀疏结构属性;其次,建立鲁棒的多核低秩稀疏约束模型,用于减少噪声对关系图的影响和处理数据的非线性结构;最后,通过多核方法充分利用共识核矩阵来增强关系图质量。7个数据集上的实验结果表明,所提算法JLSMKC在聚类精度(ACC)、标准互信息(NMI)和纯度(Purity)上优于5种流行的多核聚类算法,同时减少了聚类时间,提高了关系图块对角质量。该算法在聚类性能上有较大优势。 Since the methods of multiple kernel subspace spectral clustering do not consider the problem of noise and relation graph structure,a novel Joint Low-rank and Sparse Multiple Kernel Subspace Clustering algorithm(JLSMKC)was proposed.Firstly,with combination of low-rank and sparse representation for subspace learning,the relation graph obtained the attribute of low-rank and sparse structure.Secondly,a robust multiple kernel low-rank and sparsity constraint model was constructed to reduce the influence of noise on the relation graph and handle the nonlinear structure of data.Finally,the quality of relation graph was enhanced by making full use of the consensus kernel matrix by multiple kernel approach.The experimental results on seven datasets show that the proposed JLSMKC is better than five popular multiple kernel clustering algorithms in ACCuracy(ACC),Normalized Mutual Information(NMI)and Purity.Meanwhile,the clustering time is reduced and the block diagonal quality of relation graph is improved.JLSMKC has great advantages in clustering performance.
作者 李杏峰 黄玉清 任珍文 LI Xingfeng;HUANG Yuqing;REN Zhenwen(School of Information Engineering,Southwest University of Science and Technology,Mianyang Sichuan 621010,China;School of National Defense Science and Technology,Southwest University of Science and Technology,Mianyang Sichuan 621010,China)
出处 《计算机应用》 CSCD 北大核心 2020年第6期1648-1653,共6页 journal of Computer Applications
基金 国家自然科学基金资助项目(61673220) 国家国防科技工业局项目(JCKY2017209B010,JCKY2018209B001)。
关键词 低秩稀疏 关系图结构 子空间学习 多核 谱聚类 low-rank and sparse relation graph structure subspace learning multiple kernel spectral clustering
  • 相关文献

参考文献4

二级参考文献144

  • 1周晓云,孙志挥,张柏礼,杨宜东.高维数据流子空间聚类发现及维护算法[J].计算机研究与发展,2006,43(5):834-840. 被引量:17
  • 2Donoho D L. High-dimensional data analysis: the curses and blessings of dimensionality. American Mathematical Society Math Challenges Lecture, 2000. 1-32.
  • 3Parsons L, Haque E, Liu H. Subspace clustering for high dimensional data: a review. ACM SIGKDD Explorations Newsletter, 2004, 6(1): 90-105.
  • 4Vidal R. Subspace clustering. IEEE Signal Processing Magazine, 2011, 28(2): 52-68.
  • 5Agrawal R, Gehrke J, Gunopulos D, Raghavan P. Automatic subspace clustering of high dimensional data for data mining applications. ACM SIGMOD Record, 1998,27(2): 94-105.
  • 6Lu L, Vidal R. Combined central and subspace clustering for computer vision applications. In: Proceedings of the 23rd International Conference on Machine Learning (ICML). Pittsburgh, USA: ACM, 2006. 593-600.
  • 7Hong W, Wright J, Huang K, Ma Y. Multi-scale hybrid linear models for lossy image representation. IEEE Transactions on Image Processing, 2006, 15(12): 3655-3671.
  • 8Yang A Y, Wright J, Ma Y, Sastry S. Unsupervised segmentation of natural images via lossy data compression. Computer Vision and Image Understanding, 2008, 110(2): 212-225.
  • 9Vidal R, Soatto S, Ma Y, Sastry S. An algebraic geometric approach to the identification of a class of linear hybrid systems. In: Proceedings of the 42nd IEEE Conference on Decision and Control. Maui, HI, USA: IEEE, 2003. 167-172.
  • 10Boult T E, Brown L G. Factorization-based segmentation of motions. In: Proceedings of the 1991 IEEE Workshop on Visual Motion. Princeton, NJ: IEEE, 1991. 179-186.

共引文献288

同被引文献26

引证文献7

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部