期刊文献+

基于双编码器结构的文本自动摘要研究 被引量:6

Research on Automatic Text Summarization Based on Dual-Encoder Structure
下载PDF
导出
摘要 为了解决序列到序列模型中编码器不能充分编码源文本的问题,构建一种基于双编码器网络结构的CGAtten-GRU模型。2个编码器分别使用卷积神经网络和双向门控循环单元,源文本并行进入双编码器,结合2种编码网络结构的输出结果构建注意力机制,解码器端使用GRU网络融合Copy机制和集束搜索方法,以提高解码的准确度。在大规模中文短文本摘要数据集LCSTS上的实验结果表明,与RNN context模型相比,该模型的Rouge-1、Rouge-2和Rouge-L分别提高0.1、0.059和0.046。 This paper constructs a CGAtten-GRU model based on dual-encoder network structure to solve the problem that the encoder cannot fully encode the source text in the sequence-to-sequence(seq2seq)model.The two encoders use Convolutional Neural Network(CNN)and Bidirectional Gated Recurrent Unit(BiGRU)respectively,and the source text enters the two encoders in parallel.An attention mechanism is constructed by means of the outputs of two encoding networks.The decoder uses GRU network combining the Copy mechanism and the beam search method to improve the accuracy of decoding.Experimental results on large-scale Chinese short text summarization dataset LCSTS show that compared with the RNN context model,the proposed model improves Rouge-1 by 0.1,Rouge-2 by 0.059,and Rouge-L by 0.046.
作者 冯读娟 杨璐 严建峰 FENG Dujuan;YANG Lu;YAN Jianfeng(School of Computer Science and Technology,Soochow University,Suzhou,Jiangsu 215006,China)
出处 《计算机工程》 CAS CSCD 北大核心 2020年第6期60-64,共5页 Computer Engineering
基金 国家自然科学基金(61572339,61272449) 江苏省科技支撑计划重点项目(BE2014005)。
关键词 自然语言处理 生成式摘要 卷积神经网络 门控循环单元 注意力机制 序列到序列模型 Copy机制 Natural Language Processing(NLP) abstractive summarization Convolutional Neural Network(CNN) Gated Recurrent Unit(GRU) attention mechanism sequence-to-sequence(seq2seq)model Copy mechanism
  • 相关文献

参考文献3

二级参考文献39

  • 1Pang Bo,Lee L,Vaithyanathan S.Thumbs up?SentimentClassification Using Machine Learning Techniques[C]//Proc.ofConference on Empirical Methods in Natural Language Processing.[S.l.]:ACM Press,2002.
  • 2Kim Soo-Min,Hovy E.Automatic Detection of Opinion BearingWords and Sentences[C]//Proc.of International Joint Conferenceon Natural Language Processing.Jeju Island,Korea:[s.n.],2005.
  • 3Yu Hong,Hatzivassiloglou V.Towards Answering OpinionQuestions:Separating Facts from Opinions and Identifying thePolarity of Opinion Sentences[C]//Proc.of Conference onEmpirical Methods in Natural Language Processing.Sapporo,Japan:[s.n.],2003.
  • 4Hu Minqing,Liu Bing.Mining and Summarizing CustomerReviews[C]//Proc.of Conference on Knowledge Discovery andData.[S.l.]:ACM Press,2004.
  • 5Cui Hang,Mittal V,Datar M.Comparative Experiments onSentiment Classification for Online Product Reviews[C]//Proc.ofthe 21st National Conference on Artificial Intelligence.[S.l.]:ACM Press,2006.
  • 6Kim Soo-Min,Hovy E.Automatic Identification of Pro and ConReasons in Online Reviews[C]//Proc.of the 21st InternationalConference on Computational Linguistics and the 44th AnnualMeeting of the Association for Computational Linguistics.Sydney,Australia:[s.n.],2006.
  • 7Zhao Jun,Liu Kang,Wang Gen.Adding Redundant Features forCRFs-based Sentence Sentiment Classification[C]//Proc.ofConference on Empirical Methods in Natural Language Processing.[S.l.]:ACM Press,2008.
  • 8Go A,Bhayani R,Huang Lei.Twitter Sentiment ClassificationUsing Distant Supervision[Z].2009.
  • 9Pak A,Paroubek P.Twitter as a Corpus for Sentiment Analysisand Opinion Mining[C]//Proc.of Language Resources andEvaluation Conference.Lisbon,Portugal:[s.n.],2010.
  • 10Jiang Long,Yu Mo,Zhou Ming,et al.Target-dependent TwitterSentiment Classification[C]//Proc.of the 49th Annual Meeting ofthe Association for Computational Linguistics.Portland,USA:[s.n.],2011:151-160.

共引文献1762

同被引文献106

引证文献6

二级引证文献19

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部