摘要
针对频谱弥散干扰、切片组合干扰、灵巧噪声干扰、噪声调幅-距离欺骗加性复合干扰与噪声调频-距离欺骗加性复合干扰5种干扰类型的识别问题,提出一种基于SAE-GA-SVM的检测模型算法。建立目标回波与干扰信号的数学模型,采用多域联合的特征提取方法提取47维特征。为有效去除冗余信息并保持较高的识别率,运用深度学习中的稀疏自编码器(SAE),通过SAE结构建立高维空间和低维空间的双向映射,从而获得原始数据的相应最优低维表示。利用遗传算法优化支持向量机的惩罚因子和核函数参数,构建基于SAE-GA-SVM的雷达新型干扰识别检测模型。仿真结果表明,该模型能够有效降低特征维度,相比传统的GA-SVM检测模型识别准确率提高10%。
Aiming at the identification problems that Smeared Spectrum(SMSP),Chopping and Interleaving(C&I),smart noise jamming,the composite jamming of noise amplitude modulation and noise range deception,and the composite jamming of noise frequency modulation and noise range deception.This paper proposes a SAE-GA-SVM-based identification model algorithm,which can identify.The algorithm constructs a mathematical model for target echo and jamming signals,employing a multi-domain joint feature extraction method to extract the 47-dimensional features.In order to effectively remove redundant data and maintain a high identification rate,the Stacked Auto-Encoder(SAE)algorithm in deep learning is adopted.By using the SAE structure,a mutual mapping between high-dimensional space and low-dimensional space is constructed to obtain the corresponding optimal low-dimensional representation of raw data.Then the Genetic Algorithm(GA)is used to optimize the penalty factor and kernel function parameters of Support Vector Machine(SVM),and on this basis the SAE-GA-SVM-based model for new radar jamming identification is established.Simulation results show that the proposed model can effectively reduce the feature dimension,and its classification accuracy is 10%higher than that of the traditional detection models.
作者
罗彬珅
刘利民
董健
刘璟麒
LUO Binshen;LIU Limin;DONG Jian;LIU Jingqi(Department of Electronic and Optical Engineering,Army Engineering University(Shijiazhuang Campus),Shijiazhuang 050003,China)
出处
《计算机工程》
CAS
CSCD
北大核心
2020年第6期281-287,共7页
Computer Engineering
基金
“十三五”装备预研项目(61404150402)。
关键词
新型干扰
特征提取
特征降维
堆叠自编码器
遗传算法
new jamming
feature extraction
feature dimension reduction
Stacked Auto-Encoder(SAE)
Genetic Algorithm(GA)