期刊文献+

基于深度置信网络的无人机航拍图像变化检测

Change Detection of Unmanned Aerial Vehicle Images Based on Deep Belief Networks
下载PDF
导出
摘要 无人机(UAV)图像的变化检测对城市规划发展中的城市空间布局、土地利用信息具有重要的意义.针对航拍图像地面背景复杂,传统的变化检测方法鲁棒性低等问题,研究基于深度置信网络(DBN)的无人机航拍图像变化检测方法.利用DBN能够自动学习、提取特征的特点,将DBN应用到无人机图像的变化检测中.首先通过模糊C聚类联合算法对采集的图像进行预分类,并在此基础上进行DBN的逐层预训练;然后利用反向传播算法微调整个网络,从而使网络权值达到最优;最后,将该DBN模型应用于无人机图像的变化检测.实验结果表明,该方法能够有效地提取出图像的变化区域,检测准确率达到95%以上,该方法提高了图像变化检测的精度,实现了图像变化检测的智能化. Change detection of unmanned aerial vehicle(UAV)image is of great significance to urban spatial layout and land use information in urban planning and development.A change detection method for aerial image of UAV based on deep belief network(DBN)is studied.to solve the proble of the complex ground background of aerial image and the low robustness of traditional change detection methods.DBN is applied to change detection of UAV image,which can automatically learn and extract features.Firstly,the collected images are pre-classified by the joint algorithm of fuzzy C-means clustering,and on this basis,the layer-by-layer pre-training of DBN is carried out.Then,the back-propagation algorithm is used to fine-tune the network so as to optimize the weight of the network.Finally,the DBN model is applied to the change detection of UAV images.The experimental results show that this method can effectively extract the change area of the image,and the detection accuracy reaches more than 95%.This method improves the accuracy of image change detection and realizes the intellectualization of image change detection.
作者 张怡 陈平 ZHANG Yi;CHEN Ping(School of Information and Communication Engineering, North University of China, Taiyuan 030051, China)
出处 《测试技术学报》 2020年第3期190-196,共7页 Journal of Test and Measurement Technology
基金 国家自然科学基金资助项目(61801497,61871351) 山西省自然科学青年基金资助项目(201801D221207) 四川省科技计划项目重点研发资助项目(2018FZ0072)。
关键词 深度置信网络 无人机图像 变化检测 深度学习 deep belief network unmanned aerial vehicle image change detection deep learning
  • 相关文献

参考文献3

二级参考文献20

  • 1陈仁喜,赵忠明,潘晶.遥感分类栅格图的快速矢量化方法[J].遥感学报,2006,10(3):326-331. 被引量:18
  • 2Lee T S, Mumford D. Hierarchical Bayesian inference in the visual cortex[J]. Optical Society of America, 2003, 20(7): 1434-1448.
  • 3Rossi A F, Desimone R, Ungerleider L G. Contextual modulation in primary visual cortex of macaques[J]. J of Neuroscience, 2001, 21(5): 1689-1709.
  • 4Hinton G E, Salakhutdinov R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 5Dahl G E, Yu D, Deng L, et al. Large vocabulary continuous speech recognition with context-dependent DBN-HMMS[C]. Proc of IEEE Int Conf on Acoustics, Speech and Signal Processing. Prague, 2011:4688-4691.
  • 6Deselaers T, Hasan S, Bender O, et al. A deep learning approach to machine transliteration[C]. Proc of the 4th Workshop on Statistical Machine Translation. Athens, 2009: 233-241.
  • 7Fasel I, Berry J. Deep belief networks for real-time extraction of tongue contours from ultrasound duringspeech[C]. Proc of the 20th Int Conf on Pattern Recognition. Stroudsburg: Association for Computational Linguistics, 2010: 1493-1496.
  • 8Deng L, Seltzer M L, Yu D, et al. Binary coding of speech spectrograms using a deep auto-encoder[C]. Proc of the 1 lth Annual Conf on Int Speech Communication Association. Makuhair, 2010: 1692-1695.
  • 9Bengio Y. Learning deep architectures for AI[J]. Foundations & Trends in Machine Learning, 2009, 2(1): 1-127.
  • 10Yoshua Bengio, Pascal Lamblin, Dan Popovici, et al. Greedy layer-wise training of deep networks[C]. Advances in Neural Information Processing Systems 19 (NIPS 2006). Vancouver, 2007: 153-160.

共引文献54

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部