期刊文献+

基于多目标优化的测试用例优先级排序方法 被引量:8

Test Case Prioritization Based on Multi-objective Optimization
下载PDF
导出
摘要 回归测试是软件测试中使用最频繁、成本最昂贵的测试方法。测试用例优先级排序是一种能够有效降低回归测试成本的方法,其目的是通过优先执行高级别的测试用例来达到提升软件故障检测的能力。文中提出了一种基于多目标优化的测试用例优先级排序方法,该方法在遗传算法的个体评价机制中融入了选择函数,设计了合理的编码方式以及合适的选择、交叉和变异策略,以故障检测率、语句覆盖率和有效执行时间为优化目标,采用非支配排序遗传算法对测试用例优先级排序。基于4个基准程序和4个工业程序的实验结果表明:与其他方法相比,所提方法能够提高软件测试的有效性。 Regression testing is the most frequently used and expensive testing method in software testing.Test case prioritization is an effective way to reduce the cost of regression testing.Its purpose is to improve the ability of software fault detection by prio-ritizing the execution of high-level test cases.In this paper,a method of test case prioritization based on multi-objective optimization is proposed.The method integrates choice function into individual evaluation mechanisms of genetic algorithm.By designing a reasonable coding method and appropriate selection,crossover and mutation strategies,taking fault detection rate,sentence covera-ge rate and effective execution time as optimization objectives,non-dominated sorting genetic algorithm is used to optimize test case sort.The experimental results based on four benchmark programs and four industrial programs show that the proposed method can improve the effectiveness of software testing compared with other methods.
作者 夏春艳 王兴亚 张岩 XIA Chun-yan;WANG Xing-ya;ZHANG Yan(School of Computer and Information Technology,Mudanjiang Normal University,Mudanjiang,Heilongjiang 157011,China;State Key Laboratory for Novel Software Technology,Nanjing University,Nanjing 210023,China)
出处 《计算机科学》 CSCD 北大核心 2020年第6期38-43,共6页 Computer Science
基金 黑龙江省教育厅基本科研业务费(1353MSYYB005) 牡丹江师范学院科学技术研究(2018-KYYWF-0419)。
关键词 软件测试 测试用例优先级 多目标优化 非支配排序遗传算法 选择函数 Software testing Test case priority Multi-objective optimization Non-dominated sorting genetic algorithm Choice function
  • 相关文献

参考文献4

二级参考文献29

  • 1廖子贞,罗可,周飞红,傅平.一种自适应惯性权重的并行粒子群聚类算法[J].计算机工程与应用,2007,43(28):166-168. 被引量:13
  • 2Harrold M J.Testing:a roadmap[C]//Proceedings of the conference on the future of software engineering.ACM,2000:61-72.
  • 3Li Z,Harman M,Hierons R M.Search algorithms for regression test case prioritization[J].IEEE Transactions on Software Engineering,2007,33(4):225-237.
  • 4Yoo S,Harman M.Regression testing minimization,selection and prioritization:a survey[J].Software Testing,Verification and Reliability:2012,22(2):67-120.
  • 5Harman M,Jones B F.Search-based software engineering[J].Information and Software Technology,2001,43(14):833-839.
  • 6Zhu H,Wang Y,Wang K,et al.Particle Swarm Optimization(PSO) for the constrained portfolio optimization problem[J].Expert Systems with Applications,2011,38(8):10161-10169.
  • 7Kennedy J,Eberhart R.Particle swarm optimization[C]//IEEE International Conference on Neural Networks,1995.IEEE,1995,4:1942-1948.
  • 8Coello Coello C A,Lechnga M S.MOPSO:A proposal for multiple objective particle swarm optimization[C]//Proceedings of the 2002 Congress on Evolutionary Computation,2002(CEC'02).IEEE,2002,2:1051-1056.
  • 9Leung H K N,White L.Insights into regression testing[software testing].[C]//Conference on Software Maintenance,1989.IEEE,1989:60-69.
  • 10Harrold M J.Testing evolving software[J].Journal of Systems and Software,1999,47(2):173-181.

共引文献64

同被引文献74

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部