期刊文献+

基于Faster RCNN的行人及车辆类型检测 被引量:3

Pedestrian and vehicle type detection based on Faster RCNN
下载PDF
导出
摘要 随着汽车数量与日俱增,交通事故的发生频次也在增加,针对车辆类型和行人的检测问题,本文在原始Faster RCNN的基础上,首先使用残差网络RES101代替传统的VGG16网络作为共享卷积层,进行图像特征的提取,然后改变原来的锚框尺寸方案,使用锚框尺寸为4、8、16代替原来锚框尺寸,得到行人及车辆类型检测模型。通过在KITTI测试集上的测试结果表明,使用本文模型平均检测准确率可达86.5%,相比原始Faster RCNN平均准确率提高了3.65%,相比于使用残差网络RES101作为卷积层的Faster RCNN平均准确率提高了2.06%。 With the increasing number of vehicles and frequent traffic accidents,aiming at the detection of pedestrians and vehicle types,based on the original Faster RCNN,firstly,the residual network RES101 is used instead of the traditional VGG16 network as the shared convolutional layer to extract the image features.Then,the original anchor frame size scheme is changed,and the size of the anchor frame is 4,8 and 16 instead of the size of the original anchor frame,and the pedestrian and vehicle type detection model are obtained.The test results on the KITTI test set show that the average detection accuracy of the proposed model is 86.5%,3.65%higher than the original Faster RCNN,and 2.06%higher than the original Faster RCNN using residual network RES101 as the convolutional layer.
作者 邵丽萍 魏相站 李春红 唐志英 白忠臣 张正平 SHAO Liping;WEI Xiangzhan;LI Chunhong;TANG Zhiying;BAI Zhongchen;ZHANG Zhengping(College of Big Data and Information Engineering,Guizhou University,Guiyang 550025,China;The Key Laboratory for Photoelectric Technology and Application,Guizhou University,Guiyang 550025,China)
出处 《智能计算机与应用》 2020年第3期95-97,100,共4页 Intelligent Computer and Applications
基金 国家自然科学基金(61865002) 贵州省科技支撑计划(SY[2017]2881) 贵州大学引进人才项目(201602) 贵州省人才团队项目([2018]5616) 中央引导地方科技发展专项(QKZYD[2017]4004)。
关键词 Faster RCNN 残差网络 特征提取 锚框选区 Faster RCNN residual network feature extraction anchor frame selection
  • 相关文献

参考文献5

二级参考文献11

共引文献168

同被引文献33

引证文献3

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部