期刊文献+

基于随机游走的级联网络社区发现算法

Community detection in cascade networks using random walks
下载PDF
导出
摘要 随着Web 2.0的不断推广以及社交应用的不断普及,在线社交网络结构分析得到了各领域学者的广泛关注。社区是网络中内嵌的密集群组,保证了社区内部用户的强相关性和一致性,因此广泛应用于病毒防护、商品推荐等现实系统。本文提出一种基于随机游走的级联网络社区发现算法,主要解决非直连节点间的相似性度量问题。提出一种基于2-hop随机游走的局部可达性计算方法,通过对游走终点一致的节点进行层次聚类,社区结构可在较短的时间内迭代生成。实验结果表明,本方法在级联网络社区发现中具有较高的性能和效率,对星形社区具有较高的匹配性。 With the continuous promotion of Web 2.0 and the continuous popularization of social applications,the structural analysis of online social networks has attracted extensive attention from scholars in various fields.Community is a dense group embedded in the network,which ensures the strong correlation and consistency of users within the community.Therefore,it is widely used in virus protection,commodity recommendation,and other practical systems.In this paper,a cascade network community discovery algorithm based on the random walk is proposed to solve the similarity measurement problem of non-directly connected nodes.The paper proposes a local reachability calculation method based on 2-hop random walks.The community structure can be generated iteratively in a short time by hierarchical clustering of nodes with consistent endpoints.The experimental results show that this method has high performance and efficiency in cascaded network community detection and has a high matching to the star community.
作者 王亮 杨海陆 陈德运 WANG Liang;YANG Hailu;CHEN Deyun(School of Computer Science and Technology,Harbin University of Science and Technology,Harbin 150080,China)
出处 《智能计算机与应用》 2020年第3期236-240,245,共6页 Intelligent Computer and Applications
基金 黑龙江省自然科学基金面上项目(F2016024) 黑龙江省博士后资助经费(LBH-Z15095) 黑龙江省普通高等学校创新人才培养计划(UNPYSCT-2017094) 国家级大学生创业创新训练计划(201810214020)。
关键词 级联网络 社区发现 随机游走 层次聚类 cascaded network community detection random walks hierarchical clustering
  • 相关文献

参考文献3

二级参考文献55

  • 1Girvan M and Newman M E J. Coinmunity structure in social and biological networks[J]. Proceedings of the National Academy of Science, 2002, 9(12): 7821-7826.
  • 2Yang B, Cheung W K, and Liu 3 M. Community mining from signed social networks[J]. IEEE Transactions on Knowledge and Data Ertgmeevin9, 2007, 19(10): 1333 1348.
  • 3Newman M E J. Fast algorithm for detecting community structure in networks[J]. Physical Review E, 2004, 69(6): 066133.
  • 4Blondel V D, Guillaume J L, Lambiotte R, et al.. Fast unfolding of communities in large networks[J]. Journal of Statistical Mechanics: Theory and Ezperiment, 2008, COI: 10.1088/1742-5468/2008/10/910008.
  • 5Newman M E J. A measure of betweenness centrality based on random walks[J]. Social Networks, 2005, 27(1): 39-54.
  • 6Cai Bing-jing, Wang Hai-ying, Zheng Hui-ru, et al.. An improved random walk based clustering algorithm for community detection in complex networks[C]. 2011 IEEE International Conference, on Systems, Man,and Cybernetics, Alaska, USA, Oct. 2011: 2162-2167.
  • 7Rosvall M and Bergstrom complex networks reveal C T. Maps of random walks on community structure[J]. PNAS,2008, 105(4): 1118 1123.
  • 8Alahakoon T, Tripathi R, Kourtellis N, ct al.. K-path centrality: a new centrality measure in social networks[C]. Proceedings of 4th Workshop on Social Network Systems, Salzburg, Austria, 2011:1 6.
  • 9Ferrara E. Community structure discovery in Facebook[J] International Journal of Social Network Mining, 2012, l(l) 67 90.
  • 10Hoeffding W. Probability inequalities for sums of bounded random variables[J]. Jourttal of the AmeT-ican Statistical Association, 1963, 58(301): 13-30.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部