期刊文献+

A FULLY DISCRETE IMPLICIT-EXPLICIT FINITE ELEMENT METHOD FOR SOLVING THE FITZHUGH-NAGUMO MODEL

原文传递
导出
摘要 This work develops a fully discrete implicit-explicit finite element scheme for a parabolicordinary system with a nonlinear reaction term which is known as the FitzHugh-Nagumo model from physiology.The first-order backward Euler discretization for the time derivative,and an implicit-explicit discretization for the nonlinear reaction term are employed for the model,with a simple linearization technique used to make the process of solving equations more efficient.The stability and convergence of the fully discrete implicit-explicit finite element method are proved,which shows that the FitzHugh-Nagumo model is accurately solved and the trajectory of potential transmission is obtained.The numerical results are also reported to verify the convergence results and the st ability of the proposed method.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2020年第3期469-486,共18页 计算数学(英文)
基金 The authors would like to thank the referee and the editor for their valuable&constructive comments,which have greatly improved the article.This research was supported by the National Natural Science Foundation of China(Grant Nos.11871399,11471261,11101333,11302172,11571275) the Natural Science Foundation of Shaanxi(Grant No.2017JM 1005) the Fundamental Research Funds for the Central Universities of China(Grant Nos.31020180QD07&3102017zy041).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部