摘要
目的建立基于人工神经网络编码数据挖掘技术的中医妇科病辨识数据分析方法。方法检索中国期刊全文数据库(CNKI)、万方期刊数据库、维普中文期刊数据库,收集1980~2019年公开发表的关于妇科疾病多囊卵巢综合症(PCOS)的中医治疗与诊断方面文献,获取妇科辨证分型数据集,采用ANN模型对数据集进行量化分析。结果通过模拟数据集ANN分析,建立了三层网络结构ANN模型,其中输入层包含15个输入神经元、隐含层包含4个神经元、输出层包含6个神经元,获得了多囊卵巢综合症中医妇科证素与证候之间的内在逻辑关系。重复训练及测试结果显示,中医证型的预测匹配率为100.00%。对15个输入协变量进行了参数重要性分析显示,精神状况>周期>身体上部>皮肤>舌象>经色>面色>大便8个症状的指标规范重要性大于50%。结论基于人工神经网络技术建立了一种妇科疾病中医诊疗的证素-证型关系的神经网络方法,也为挖掘民族医学信息数据进行定性辨识、动态及多维数据的处理与分析提供一种有效途径。
Objective To establish a data analysis method for TCM gynecological disease identification based on artificial neural network coding data mining technology.Methods Retrieval of Chinese Journal Full-text Database(CNKI),Wanfang Journal Database,Weipu Chinese Journal Database,collection of publicly published literatures on TCM treatment and diagnosis of gynecological diseases polycystic ovary syndrome(PCOS)from 1980 to 2019,and access to gynecological syndromes Classification data set,ANN model is used to quantify the data set.Results Through ANN analysis of the simulation data set,a three-layer network structure ANN model was established,in which the input layer contains 15 input neurons,the hidden layer contains 4 neurons,and the output layer contains 6 neurons,and polycystic ovary syndrome is obtained The internal logical relationship between gynecological syndromes and syndromes in traditional Chinese medicine.Repeated training and test results show that the prediction matching rate of TCM syndromes is 100.00%.A parameter importance analysis of 15 input covariates shows that mental condition>period>upper body>skin>tongue>menstrual color>face color>stools are more than 50%of the index of 8 symptoms.Conclusion Based on artificial neural network technology,a neural network method of syndrome-syndrome relationship of traditional Chinese medicine diagnosis and treatment of gynecological diseases is established.
作者
王海燕
鲁思博
孟军
黄锦元
鲁澄宇
WANG Hai-yan;LU Si-bo;MENG Jun;HUANG Jin-yuan;LU Cheng-yu(Library of Guangdong Medical University,Dongguan 523808,Guangdong,China;Computer Science and Technology,Acadia University,Wolfville 4725,Nova Scotia,Canada;Department of Gynecology,Shenzhen Nanshan People's Hospital,Shenzhen 518057,Guangdong,China;School of Pharmacy,Guangdong Medical University,Dongguan 523808,Guangdong,China)
出处
《医学信息》
2020年第11期1-4,共4页
Journal of Medical Information
基金
湛江市科技计划项目(编号:2017B01201)。
关键词
人工神经网络
妇科疾病辨识
数据挖掘
中医证型
Artificial neural networks
Gynecological disease identification
Data mining
TCM syndromes