期刊文献+

基于RBF神经网络的控制器参数优化设计研究 被引量:3

Research on Optimal Design of Controller Parameters Based on RBF Neural Network
下载PDF
导出
摘要 以单输入单输出控制系统为研究对象,为快速完成控制器参数整定及优化,提升系统动态性能和稳态性能,提出了一种基于RBF(Radial Basis Function)神经网络的控制器参数优化方法。利用RBF神经网络的局部逼近能力和自学习能力,构造出控制系统辨识与控制器参数优化双网络结构,实现了对被控对象的在线辨识及增量式不完全微分PID控制器参数的在线迭代,快速完成控制器参数的整定,在保证系统动态特性的同时,大幅提升稳定精度。 Taking single input single output control system as research object,a controller parameter optimization method based on RBF neural network is presented to quickly complete controller parameter tuning and optimization and to improve system dynamic performance and steady-state performance.Using the local approximation ability and self-learning ability of the RBF neural network,a control system identification and controller parameter optimization dual network structure is constructed.Taking this method,the online identification of the controlled object and the online iteration of the parameters of the incremental incomplete differential PID controller is realized.It can quickly complete parameter tuning,while ensuring the dynamic characteristics of the system,greatly improve the stability accuracy.
作者 钟婧佳 赵洪 佟泽友 蒋明明 黄建友 Zhong Jing-jia;Zhao Hong;Tong Ze-you;Jiang Ming-ming;Huang Jian-you(China Academy of Launch Vehicle Technology,Beijing,100076)
出处 《导弹与航天运载技术》 CSCD 北大核心 2020年第3期76-80,共5页 Missiles and Space Vehicles
关键词 控制系统 参数优化 RBF神经网络 系统辨识 control system parameter optimization RBF neural network system identification
  • 相关文献

参考文献3

二级参考文献21

  • 1万德均.惯性导航初始对准[M].南京:东南大学出版社,1990..
  • 2HILKERT J M.Inertially stabilized platform technology concepts and principles[J].IEEE Contr.Syst.Mag.,2008,28 (1):26-46.
  • 3MASTENM K.Inertially stabilized platforms for optical imaging systems[J].IEEE Contr.Syst.Mag.,2008,28 (1):47-64.
  • 4LI B,HULLENDER D,DIRENZO M.Nonlinear induced disturbance rejection in inertial stabilization systems[J].IEEE Trans.Control Syst.Technol.,1998,6 (3):421-427.
  • 5LI B,HULLENDER D.Self-Tuning controller for nonlinear inertial stabilization systems[J].IEEE Trans.Control Syst.Technol.,1998,6 (3):428-434.
  • 6MOORTYJ A R K,SULE V R.H∞ control law for line-of-sight stabilization for mobile land vehicles[J].Opt.Eng.,2002,41 (11):2935-2944.
  • 7ABDO M M,VALI A R,TOLOEI A R,et al..Stabilization loop of a two axes gimbal system using self-tuning PID type fuzzy controller[J].ISA Trans.,2014,53(2):591-602.
  • 8LIN C L,HSIAO Y H.Adaptive feedforward control for disturbance torque rejection in seeker stabilizing loop[J].IEEE Trans.Control Syst.Technol.,2001,9 (1):108-121.
  • 9HILKERT J M.Adaptive control system techniques applied to inertial stabilization systems[C].Proceedings of SPIE Acquisition,Tracking,and Pointing Ⅳ,1990,1304:190-206.
  • 10AIRIMITOAIE T B,SILVA A C,LANDAU I D.Indirect adaptive regulation strategy for the attenuation of time varying narrow-band disturbances applied to a benchmark problem[J].Eur.J.Control,2013,19 (4):313-325.

共引文献72

同被引文献8

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部