期刊文献+

部分扩散与试错混合量子搜索算法的性能和最优参数分析 被引量:2

Performance and Optimal Parameters Analysis of the Hybrid Partial Diffusion and Trail-and-Error Quantum Search Algorithm
下载PDF
导出
摘要 Younes等人基于试错方法,将已知目标解比例(λ)情形下的部分扩散量子搜索算法推广到未知λ情形,解决了原始的试错算法不能适用于目标解比例全区间(λ∈(0,1])的问题,并指出算法的平均成功率和期望迭代次数存在优势。通过对Younes算法严格分析,指出该算法的平均成功率下界和期望迭代次数上界存在错误,且算法的参数最优取值问题被忽视。给出了Younes算法正确的性能分析以及算法最优参数关于平均成功率下界的解析函数式。结果表明,Younes算法的平均成功率和期望迭代次数并不优于原始的试错算法。文章工作为未知目标解比例情形下基于试错方法的量子搜索算法的研究提供重要指导。 Based on the trial-and-error method,Younes et al.extended the partial diffusion quantum search algorithm in the case of known fraction(λ)of target items to the case of unknownλ,which solved the problem that the original trial-and-error algorithm cannot be applied to the entire range ofλ∈(0,1],and claimed the advantages in average success probability and expected number of iterations of their algorithm.Through rigorous analysis of Younes algorithm,this paper points out the errors in the lower bound of average success probability and the upper bound of expected number of iterations,and the problem that optimal value of the algorithm parameter is ignored.Furthermore,the correct performance analysis of Younes algorithm,as well as the analytical optimal parameters as a function of the lower bound of average success probability are given.Results show that the average success probability and expected number of iterations of the Younes algorithm are not superior to the original trial-and-error algorithm.This paper provides an important guidance for the research of quantum search algorithms based on trial-and-error method in the case of unknownλ.
作者 李坦 肖晨 钟普查 LI Tan;XIAO Chen;ZHONG Pucha(Information Engineering University, Zhengzhou 450001, China;Hunan Provincial Military Command, Changsha 410001, China)
出处 《信息工程大学学报》 2019年第6期758-762,共5页 Journal of Information Engineering University
基金 国家自然科学基金资助项目(11504430)。
关键词 量子搜索 部分扩散 试错 平均成功率 最优参数 quantum search partial diffusion trail-and-error average success probability optimal parameters
  • 相关文献

参考文献2

二级参考文献12

  • 1Grover L K 1996 The 28^th Annual Symposium on the Theory of Computing (New York 22 24 May 1996).
  • 2Biham E and Kenigsberg D Phys. Rev. A 66 062301.
  • 3Younes A, Rowe J and Miller J 2004 Proceedings of the 7^th International Conference on Quantum Communication, Measurement and Computing (UK, 25 29 July 2004) Grover L K 2005 Phys. Rev. Lett. 95 150501.
  • 4Grover L K 2005 Phys. Rev. Lett. 95 150501.
  • 5Younes A 2007 quant-ph/070.1585v2.
  • 6Long G L, Li Y S, Zhang W L and Niu L 1999 Phys. Lett. A 262 27.
  • 7Grover L K 1998 Phys. Ftev. Lett. 80 4329.
  • 8Boyer M, Brassard G, Hoyer P and Tapp A 1996 Proceedings of the 4^th Workshop Physics and Computation (Boston 22-24 November 1996).
  • 9Brassard G, Hфyer P, Mosca M and Tapp A 2000 quantumph/0005055.
  • 10Galindo A and Martin-Delgado M A 2000 Phys. Rev. A 62 062303.

共引文献6

同被引文献26

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部