期刊文献+

一种用于锥体目标微动分类的深度学习模型 被引量:1

Deep learning model for micro-motion classification of cone targets
下载PDF
导出
摘要 针对传统的空间锥体目标微动分类需人工构造、提取特征而缺乏通用性、智能性及在强噪声条件下分类性能差等问题,提出一种卷积神经网络和双向长短期记忆网络相结合的网络新模型。该网络将残差网络、Inception网络及双向长短期记忆网络融合成一体化网络,通过增加网络的深度和宽度来挖掘更高维度的抽象特征以提升网络的分类准确率,而双向长短期记忆网络的推理能力能提高网络的容错性,时序分类的优势,以及残差网络跳跃式的旁路支线结构还能减少参数冗余,加快网络训练速度。仿真结果表明,该网络模型不仅能实现更快速的智能分类,同时比ResNet-18、GoogLeNet模型的精度分别提高5%、4%,验证了该模型的有效性和泛化能力。 features of higher dimensions,the classification accuracy of the network can be improved.The reasoning ability of the bidirectional long short-term memory network can improve the fault tolerance of the network,and the advantages of time series classification and the jumping bypass branch structure of the residual network can also reduce parameter redundancy and speed up network training.Simulation results show that the network model not only achieves faster intelligent classification,but also improves the accuracy of ResNet-18 and GoogLeNet models by 5%and 4%respectively,thus verifying the validity and generalization ability of the model.
作者 李江 冯存前 王义哲 许旭光 LI Jiang;FENG Cunqian;WANG Yizhe;XU Xuguang(Air and Missile Defense College,Air Force Engineering University,Xi’an 710051,China;Collaborative Innovation Center of Information Sensing and Understanding,Xi’an 710077,China)
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2020年第3期105-112,共8页 Journal of Xidian University
基金 国家自然科学基金(61701526,61701528) 陕西省自然科学基础研究计划(2019JQ-336)。
关键词 空间锥体目标 微动分类 时频分析 深度学习 spatial cone target micro-motion classification time-frequency analysis deep learning
  • 相关文献

参考文献9

二级参考文献63

  • 1冯德军,刘进,丹梅.弹道中段目标RCS周期特性及其估计方法[J].宇航学报,2008,29(1):362-365. 被引量:19
  • 2洪灵,戴奉周,刘宏伟.基于三维重构的空间目标进动参数估计方法[J].电波科学学报,2015,30(2):237-243. 被引量:6
  • 3王涛,周颖,王雪松,肖顺平,郭桂蓉.雷达目标的章动特性与章动频率估计[J].自然科学进展,2006,16(3):344-350. 被引量:22
  • 4庄钊文,刘永祥,黎湘.目标微动特性研究进展[J].电子学报,2007,35(3):520-525. 被引量:127
  • 5Chen V C. Analysis of Radar Micro-Doppler Signature with Time-frequency Transform[ C]//Proceedings of the 10th IEEE Workshop on Statistical Signal and Array Processing. Pennsylvania: IEEE, 2000: 463-466.
  • 6Chen V C. Micro-Doppler Effect of Micro-motion Dynamics: a Review[ C] //Independent Component Analyses, Wavelets, and Neural Networks. Orlando: SPIE, 2003: 240-249.
  • 7Nunn E C. The US Army White Sands Missile Range Development of Target Motion Resolution[ C]//Processing of IEEE Eelectronics and Aerospace Systems Conventions. Arlington: IEEE Press, 1980: 346-352.
  • 8Kirk J. S-band Radar Micro-Doppler Signatures for BMD Discrimination[ DB/OL]. [ 2004-08-24]. http://www, acq. osd. mil/ osbp/sbir/solicitations/sbir044/mda0d4, htm.
  • 9Gao H W, Xie L G, Wen S L. Micro Doppler signature extrac tion from ballistic target with micro-motions[J]. IEEE Trans. on Aerospace Electronic Systems, 2010, 46(4) : 1969 - 1982.
  • 10I.i J, Qiu C W, Zhang L, et al. Time frequency imaging algo rithm for high-speed spinning targets in two dimensions[J], lET Radar Sonar and Navigation, 2010, 4(6) :806 - 817.

共引文献148

同被引文献39

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部