期刊文献+

基于特征通道和空间联合注意机制的遮挡行人检测方法 被引量:14

Occluded Pedestrian Detection Based on Joint Attention Mechanism of Channel-wise and Spatial Information
下载PDF
导出
摘要 遮挡是行人检测任务中导致漏检发生的主要原因之一,对检测器性能造成了不利影响。为了增强检测器对于遮挡行人目标的检测能力,该文提出一种基于特征引导注意机制的单级行人检测方法。首先,设计一种特征引导注意模块,在保持特征通道间的关联性的同时保留了特征图的空间信息,引导模型关注遮挡目标可视区域;然后,通过注意模块融合浅层和深层特征,从而提取到行人的高层语义特征;最后,将行人检测作为一种高层语义特征检测问题,通过激活图的形式预测得到行人位置和尺度,并生成最终的预测边界框,避免了基于先验框的预测方式所带来的额外参数设置。所提方法在CityPersons数据集上进行了测试,并在Caltech数据集上进行了跨数据集实验。结果表明该方法对于遮挡目标检测准确度优于其他对比算法。同时该方法实现了较快的检测速度,取得了检测准确度和速度的平衡。 Pedestrian detector performance is damaged because occlusion often leads to missed detection.In order to improve the detector's ability to detect pedestrian,a single-stage detector based on feature-guided attention mechanism is proposed.Firstly,a feature attention module is designed,which preserves the association between the feature channels while retaining spatial information,and guides the model to focus on visible region.Secondly,the attention module is used to fuse shallow and deep features,then high-level semantic features of pedestrians are extracted.Finally,pedestrian detection is treated as a high-level semantic feature detection problem.Pedestrian location and scale are obtained through heat map prediction,then the final prediction bounding box is generated.This way,the proposed method avoids the extra parameter settings of the traditional anchor-based method.Experiments show that the proposed method is superior to other comparison algorithms for the accuracy of occlusion target detection on CityPersons and Caltech pedestrian database.At the same time,the proposed method achieves a faster detection speed and a better balance between detection accuracy and speed.
作者 陈勇 刘曦 刘焕淋 CHEN Yong;LIU Xi;LIU Huanlin(Key Laboratory of Industrial Internet of Things&Network Control,Ministry of Education,Chongqing University of Posts and Telecommunications,Chongqing 400065,China;School of Communication and Information Engineering,Chongqing University of Posts and Telecommunications,Chongqing 400065,China)
出处 《电子与信息学报》 EI CSCD 北大核心 2020年第6期1486-1493,共8页 Journal of Electronics & Information Technology
基金 国家自然科学基金(51977021)。
关键词 遮挡行人检测 单级检测器 注意机制 Occluded pedestrian detection Single-stage detector Attention mechanism
  • 相关文献

参考文献4

二级参考文献29

  • 1潘锋,王宣银.基于支持向量机的复杂背景下的人体检测[J].中国图象图形学报(A辑),2005,10(2):181-186. 被引量:16
  • 2胡建华,徐健健.交通监控系统中车辆和行人的检测与识别[J].电子测量技术,2007,30(1):16-17. 被引量:13
  • 3Geronimo D.A Global Approach to Vision-Based Pedes-trian Detection for Advanced Driver Assistance Systems [Ph.D.dissertation],Universitat Autonoma de Barcelona,Spain,2010.
  • 4Viola P,Jones M J.Robust real-time face detection.Inter-national Journal of Computer Vision,2004,57(2):137-154.
  • 5Dalal N,Triggs B.Histograms of oriented gradients for hu-man detection.In:Proceedings of the IEEE Computer So-ciety Conference on Computer Vision and Pattern Recogni-tion.San Diego,USA:IEEE,2005.886-893.
  • 6Freund Y,Schapire R E.A decision-theoretic generalization of on-line learning and an application to boosting.In:Pro-ceedings of the2nd European Conference on Computational Learning Theory.Barcelona,Spain:Springer,1995.23-37.
  • 7Zhao L,Thorpe C.Stereo-and neural network-based pedes-trian detection.IEEE Transactions on Intelligent Trans-portation Systems,2000,1(3):148-154.
  • 8Cheng H,Zheng N N,Qin J J.Pedestrian detection using sparse Gabor filter and support vector machine.In:Pro-ceedings of the IEEE Intelligent Vehicles Symposium.Las Vegas,USA:IEEE,2005.583-587.
  • 9Soga M,Hiratsuka S,Fukamachi H,Ninomiya Y.Pedestrian detection for a near infrared imaging system.In:Proceed-ings of the11th IEEE International Conference on Intelli-gent Transportation Systems.Beijing,China:IEEE,2008.1167-1172.
  • 10Iwata K,Hongo H,Yamamoto K,Niwa Y.Robust facial parts detection by using four directional features and re-laxation matching.In:Proceedings of the7th International Conference on Knowledge-Based Intelligent Information and Engineering Systems.Oxford,UK:Springer,2003.882-889.

共引文献86

同被引文献109

引证文献14

二级引证文献56

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部