期刊文献+

高氮废水生物脱氮的碱度平衡计算案例 被引量:2

Calculation of Alkalinity Balance in Biological Denitrification of High Nitrogen Wastewater
下载PDF
导出
摘要 高氮废水生物脱氮过程中的碱度消耗会影响微生物的生存环境,导致废水处理效率降低。文中以某工业园区废水处理工程为例,分析废水生物脱氮过程的碱度变化,计算得到系统需补充的碱度投加量为768 mg/L,需要的30%氢氧化钠原液为77 m^3/d,原液储存池有效容积为550 m^3,共配置3台加药泵,2用1备,每台泵流量为5.8 m^3/h。同时,推荐了加药泵设备选型,为同类废水处理工程案例设计提供了重要参考。 The consumption of alkalinity in the process of biological denitrification of high nitrogen wastewater will affect the living environment of microorganisms and lead to the decrease of wastewater treatment efficiency.Take the industrial wastewater treatment project as an example,the change of alkalinity in the process of biological nitrogen removal of wastewater is analyzed.It is calculated that the alkalinity dosage to is 768 mg/L,the required 30%sodium hydroxide liquid is 77 m^3/d,and the effective volume of the liquid storage pool is 550 m^3.Three dosing pumps are equipped,two of them are in use and one standby,and the flow rate of each pump is 5.8m^3/h.At the same time,the selection of dosing pump equipment is recommended,providing references for the design of similar waste water treatment projects.
作者 董磊 张欣 陈银广 郑雄 张辰 DONG Lei;ZHANG Xin;CHEN Yinguang;ZHENG Xiong;ZHANG Chen(Tongji University,Shanghai 200092,China;Shanghai Municipal Engineering Design Institute〈Group〉Co.,Ltd.,Shanghai 200092)
出处 《净水技术》 CAS 2020年第6期129-131,共3页 Water Purification Technology
基金 国家863计划课题(2011AA060903) 上海市科委课题(17DZ2201000)。
关键词 高氮废水 工业废水 生物脱氮 碱度平衡 high nitrogen wastewater industrial wastewater biological denitrification alkalinity balance
  • 相关文献

参考文献3

二级参考文献26

  • 1令云芳,王淑莹,王亚宜,王伟,彭永臻.A_2N反硝化除磷脱氮工艺的影响因素分析[J].工业用水与废水,2006,37(2):7-11. 被引量:20
  • 2侯金良,康勇.城市污水生物脱氮除磷技术的研究进展[J].化工进展,2007,26(3):366-370. 被引量:47
  • 3Qiu Y, Shi H C, He M. Nitrogen and phosphorous removal in the municipal wastewater treatment plants in China: A Review[J]. lnternational Journal of Chemical Engineering, 2010.DOI. 10.1155/ 2010/914159.
  • 4Scherson Y D, Wells G F, Woo S G, et al. Nitrogen removal with energy recovery through N20 decomposition[J]. Energy & EnvironmentalScience, 2013, 6 ( 1 ): 241-248.
  • 5Pantke C, Obst M, Benzerara K, et al. Green rust formation during Fe( II ) oxidation by the nitrate-reducing Acidovorax sp. Strain BoFeNI[J]. Environmental Science & Technology, 2006, 46 (3): 1439-1446.
  • 6Ruby C, Upadhyay C, G6hin A, et al. In situ redox flexibility of Fen'm oxyhydroxycarbonate green rust and fougerite[J]. Environmental Science&Technology, 2006, 40(15): 4696-4702.
  • 7Hansen H C B, Poulsen I F. Interaction of synthetic sulphate "Green rust" with phosphate and the crystallization of vivianite[J]. Clays and Clay Minerals, 1999, 47 (3) : 312-318.
  • 8Benali O, Abdelmoula M, Refait P, et al. Effect oforthophosphate on the oxidation products of Fe(lI)-Fe(III) hydroxycarbonate: The transformation of green rust to ferrihydrite[J]. Geochimica Et CosmochimicaActa, 2001, 65 (11) : 1715-1726.
  • 9Barthelemy K, Naille S, Despas C, et al. Carbonated ferric green rust as a new material for efficient phosphate removal[J]. Journal of Colloid and lnterface Science, 2012, 384 ( 1 ) : 121-127.
  • 10Yerushalmi L, Alimahmoodi M, Mulligan C N. Performance evaluation of the BioCAST technology. A new multi-zone wastewater treatment system[J]. Water Science and Technology, 2011, 64 ( 10): 1967-1972.

共引文献10

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部