摘要
针对离散广义随机Markov跳变系统零和博弈问题,讨论了其在有限时间情形和无限时间情形下鞍点均衡策略。通过配方法,分别得到了有限时间和无限时间内,离散广义随机Markov跳变系统零和博弈问题均衡策略存在等价于相应的耦合Riccati差分(代数)方程存在解,并给出了最优解的显式表达式及最优值函数。然后根据现有研究,把所得结果应用于现代鲁棒控制中的随机H∞控制问题,得到了H∞控制策略存在的条件。
The linear quadratic stochastic zero-sum games for discrete-time singular Markov jump systems in finite time and infinite time are discussed respectively in this paper.By using the square completion technique,the conditions for the existence of stochastic zero-sum games are shown to be equivalent to the solvability of the associated cross-coupled Riccati algebraic equations.Moreover,the explicit expressions of the equivalent strategies and the optimal function are given.Furthermore,the obtained results are applied to the H∞control problem of discrete-time stochastic Singular Markov jump systems.The existence conditions of the stochastic H2/H∞control strategies and explicit expressions are given.
作者
周海英
ZHOU Haiying(Department of Port and Shipping Management,Guangzhou Maritime College,Guangzhou 510725,China)
出处
《南昌大学学报(理科版)》
CAS
北大核心
2020年第1期16-22,共7页
Journal of Nanchang University(Natural Science)
基金
国家自然科学基金资助项目(71171061)
广东省自然科学基金资助项目(2015A030310218)
广州市哲学社会科学发展“十三五”规划课题(2017GZQN12)
广州航海学院创新创强资助项目。