期刊文献+

多源时空大数据在疫情防控中的应用 被引量:2

Application of Multi-source Spatiotemporal Data in the Prevention and Control of COVID-19 Epidemic
下载PDF
导出
摘要 利用手机信令等多源时空大数据,通过核密度分析法、多源数据人口密度估算法,计算确诊病例对周边影响、居住人口密度等疫情风险因素;基于风险因素建立基于多源时空数据的小区风险评估模型,计算评估小区疫情防控风险,确定疫情防控重点区域,进而基于多源时空数据开展园区复工状况评估,旨在为新冠肺炎疫情防控风险评估、精准防控工作提供参考。 In this paper,multi-source spatial and temporal data such as cell phone signaling were used to calculate the risk factors of epidemic diseases such as the peripheral influence range of confirmed cases and the residential population density through the kernel density analysis method and the population density estimation method of multi-source data.Then,the calculated risk factors are used to establish a risk assessment model based on multi-source data,calculate and evaluate the risk of epidemic prevention and control in the community,and determine the key areas for epidemic prevention and control.In addition,the multi-source spatial and temporal data were used to evaluate the resumption of work in the park,so as to provide reference for the risk assessment and accurate prevention and control of covid-19 epidemic.
机构地区 上海市测绘院
出处 《信息技术与标准化》 2020年第5期18-21,41,共5页 Information Technology & Standardization
关键词 多源时空数据 疫情防控 手机信令数据 核密度估计 风险评估 multi‐source spatiotemporal data COVID-19 Epidemic prevention and control cell phone signaling data kernel density estimation rapid risk assessment
  • 相关文献

参考文献8

二级参考文献150

共引文献501

同被引文献9

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部