摘要
针对多沙水流泵站存在水泵磨蚀、机组振动等复杂故障问题,基于大数据技术,将神经网络方法与传统的专家系统相结合,建立了多沙水流泵站的故障监测与诊断系统。实际应用结果表明,该方法能够及时定位故障问题和诊断故障原因,降低了维护成本,创造了更大的经济效益。
There are complex faults such as abrasion and cavitation of pump and vibration of unit in pumping station under the condition of sediment flow.Combining the neural network method and traditional expert system,the fault monitoring and diagnosis system of pumping station with sediment flow was set up based on big data technology.The result of practical application shows that the proposed method can timely locate the fault problems and diagnose the cause of faults,and reduce the maintenance cost as well as produce greater economic benefits.
作者
李宝
李俊梅
钮月磊
高航
于永海
LI Bao;LI Jun-mei;NIU Yue-lei;GAO Hang;YU Yong-hai(Gansu Jingtaichuan Irrigation Managmeng Bureau,Baiyin 730400,China;Guodian Nanjing Automation Co.,LTD.,Nanjing 211100,China;College of Water Conservancy and Hydropower Engineering,Hohai University,Nanjing 210098,China)
出处
《水电能源科学》
北大核心
2020年第5期160-162,94,共4页
Water Resources and Power
基金
甘肃省重点研发计划项目(18YF1GA026)。
关键词
多沙水流泵站
大数据技术
BP神经网络
专家系统
故障诊断
pumping station under the condition of sediment flow
big data technology
BP neural network
expert system
fault diagnosis