期刊文献+

一类具有非线性脉冲接种的SIRS流行病模型分析

Analysis on an SIRS Epidemic Model with Nonlinear Pulse Vaccination
原文传递
导出
摘要 本文建立了一类具有非线性脉冲免疫接种与饱和接触率的SIRS传染病模型;利用离散动力系统的频闪映射方法得到了模型的无病周期解;利用Floquet乘子理论和脉冲微分方程比较定理证明了该周期解的全局渐近稳定性,并获得了模型持久性的充分条件;还通过数值模拟展示了数值模拟结果和理论结果的一致性. In this paper,we establish an SIRS epidemic model with pulse vaccination and saturated contact rate and nonlinear pulse immunization function.By using the stroboscopic map of discrete dynamical systems,the disease-free periodic solution(DFPS for short)of the model with impulsive vaccination is obtained.Based on the Floquet theory and comparison principle of impulsive differential equations,the global asymptotic stability of the DFPS is given,and the sufficient conditions for the permanence of the model are obtained.In addition,numerical simulations are done to illustrate our analytical results.
作者 李志民 张太雷 高建忠 LI Zhimin;ZHANG Tailei;GAO Jianzhong(School of Science,Chang’an University,Xi’an,Shaanxi,710064,P.R.China)
机构地区 长安大学理学院
出处 《数学进展》 CSCD 北大核心 2020年第3期333-348,共16页 Advances in Mathematics(China)
基金 the Fundamental Research Funds for the Central Universities,CHD(No.300102129202) Scientific Innovation Practice Project of Postgraduates of Chang’an University(No.300103002110) the Natural Science Basic Research Plan in Shaanxi Province of China(No.2018JM1011)and NSFC(No.11701041).
关键词 非线性脉冲接种 周期解 全局渐近稳定 持久性 nonlinear pulse vaccination periodic solution globally asymptotically stable permanence
  • 相关文献

参考文献2

二级参考文献11

  • 1陈军杰.若干具有非线性传染力的传染病模型的稳定性分析[J].生物数学学报,2005,20(3):286-296. 被引量:26
  • 2徐文雄,张仲华,徐宗本.具有一般形式饱和接触率SEIS模型渐近分析[J].生物数学学报,2005,20(3):297-302. 被引量:23
  • 3孙树林,原存德.捕食者具有流行病的捕食-被捕食(SI)模型的分析[J].生物数学学报,2006,21(1):97-104. 被引量:51
  • 4[1]Kermack W O,Mckendrick A G.Contributions to the mathematical theory of epidemics[J].Proceedings of the Royal Society of London,1927,115A(772):700-721.
  • 5[2]Mena-Lorca J,Hethcote H W.Dynamic models of infectious diseases as regulators of population sizes[J].Journal of Mathematical Biology,1992,30(7):693-716.
  • 6[5]Lakshmikantham V,Bainov D D,Simeonov P S.Theory of Impulsive Differential Equations[M].Singapore:World Scientific,1989.
  • 7Zhou Y C,Liu H W.Stability of Periodic Solutions for an SIS Model wiyh Pulse Vaccination[J].Math.Computer Modeling,2003,38(3-4):299-308.
  • 8Stone L,Shulgin B,Agur Z.Theoretical examination of the pulse vaccination policy in the SIR epidemic model[J].Math Computer Modeling,2003,31(4-5):207-215.
  • 9Bainov D D,Simeonov P.Impulsive Differential Equations:Periodic Solutions and Applications[M].New York:John wiley and Sons,1993.
  • 10Lakshmikantham V,Bainov D D,Simeonov P S.Impulsive Differential Equations:Periodic Solutions and Applications[M].Pitman Monographs and Surreys in Pure and Applied Mathematics 66.1993.

共引文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部