期刊文献+

Weight Choosability of Graphs with Maximum Degree 4

原文传递
导出
摘要 Let k be a positive integer.A graph G is k-weight choosable if,for any assignment L(e)of k real numbers to each e∈E(G),there is a mapping f:E(G)→R such that f(uv)∈L(uv)and∑e∈∂(u)^f(e)≠∑e∈∂(u)^f(e)for each uv∈E(G),where?(v)is the set of edges incident with v.As a strengthening of the famous 1-2-3-conjecture,Bartnicki,Grytczuk and Niwcyk[Weight choosability of graphs.J.Graph Theory,60,242–256(2009)]conjecture that every graph without isolated edge is 3-weight choosable.This conjecture is wildly open and it is even unknown whether there is a constant k such that every graph without isolated edge is k-weight choosable.In this paper,we show that every connected graph of maximum degree 4 is 4-weight choosable.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2020年第6期723-732,共10页 数学学报(英文版)
基金 Supported by National Natural Science Foundation of China(Grant Nos.11871397 and 11971205) the Natural Science Basic Research Plan in Shaanxi Province of China(Grant No.2020JM-083) the Fundamental Research Funds for the Central Universities(Grant No.3102019ghjd003)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部