期刊文献+

基于TCGA数据库探讨NKAIN1表达增高与子宫内膜癌预后的关系

Increased Expression of NKAIN1 in Endometrial Carcinoma Predicts Poor Prognosis:An Analysis Based on Studies from TCGA Datasets
原文传递
导出
摘要 目的:探讨NKAIN1基因在子宫内膜癌患者组织中的表达与临床病理参数及预后的相关性。方法:利用TCGA数据库评价NKAIN1在子宫内膜癌发生发展中的作用。通过Wilcox(或Krustal)检验和逻辑回归的方法分析NKAIN1表达与临床病理参数之间的关系。采用Cox回归和Kaplan-Meier法评估各个临床病理特征包括NKAIN1的表达与总体生存率之间的关系。最后再利用TCGA进行基因集富集分析(gene set enrichment analysis,GSEA)。结果:TCGA数据库证实子宫内膜癌组织中NKAIN1表达水平明显高于正常内膜组织(P<0.001)。NKAIN1高表达与肿瘤分期(OR=2.04,III期/IV期vs I期/II期),分级(OR=2.41,中分化/低分化vs高分化),携瘤状态(OR=2.11,带瘤vs无瘤),腹水细胞学(OR=3.29,阳性vs阴性)及组织学类型(OR=3.49,浆液性腺癌/浆液性与子宫内膜样混合型腺癌vs子宫内膜样腺癌)等明显相关(P均<0.05)。Kaplan-Meier生存分析表明NKAIN1高表达组较低表达组总生存期偏短(P<0.001)。单因素分析表明NKAIN1高表达与子宫内膜癌的不良生存预后相关(HR:1.04;CI:1~1.08,P=0.016);多因素分析进一步证明NKAIN1高表达可作为独立的预后因子预测子宫内膜癌的不良结局(HR=1.05;CI:1.01~1.1;P=0.013)。GSEA分析提示NKAIN1基因高表达主要富集了细胞周期及剪接体通路。结论:NKAIN1基因高表达可能与进展期的子宫内膜癌相关,并有望成为子宫内膜癌不良预后结局的潜在的分子标志物。 Objective:To identify the association of NKAIN1 expression with clinicopathological parameters and prognosis in endometrial carcinoma(EC)patients.Methods:We evaluated the role of NKAIN1 in EC using data publicly available from The Cancer Genome Atlas(TCGA).The relationships between clinicopathologic characteristics and NKAIN1 were analyzed by the Wilcoxon test(or Kruskal-Wallis rank sum test)and logistic regression.Cox regression and Kaplan-Meier method were used to analyze the relationship between clinico-pathologic features and overall survival(OS)of TCGA pa-tients.Gene Set Enrichment Analysis(GSEA)was also conducted by using data from TCGA.Results:Increased NKAIN1 expression in EC was significantly correlated with stage(OR=2.04;III/IV vs I/II),grade(OR=2.41;moderate/poor vs well),status(OR=2.11;with tumor vs tumor free),peri-toneal cytology(OR=3.29;positive vs negative)and histology(OR=3.49;serous/mixed vs endometrioid)(all P<0.05).Kaplan-Meier survival analysis revealed that EC with high NKAIN1 expression had a worse prognosis than that with low NKAIN1 expression(P<0.001).Univariate analyses showed that high NKAIN1 expression was significantly associated with a poor OS(HR:1.04;95%CI:1-1.08;P=0.016).Multivariate analysis showed that NKAIN1 remained independently associated with OS(HR:1.05;CI:1.01-1.1;P=0.013).GSEA revealed that cell cycle and spliceosome were differen-tially enriched in the NKAIN1 high expression group.Conclusion:NKAIN1 expression may correlate with the development of EC,and its high expression might be used as a potential prognostic molecular marker of poor survival in EC.
作者 王翠翠 孔繁菲 马剑 张运征 马晓欣 Wang Cuicui;Kong Fanfei;Ma Jian;Zhang Yunzheng;Ma Xiaoxin(Department of Gynaecology and Obstetrics,Shengjing Hospital of China Medical University,Shenyang 110000,Liaoning,China)
出处 《肿瘤预防与治疗》 2020年第5期401-407,共7页 Journal of Cancer Control And Treatment
基金 国家自然科学基金项目(编号:81872123) 辽宁省高等学校创新团队支持计划(辽教函[2018]479号)。
关键词 NKAIN1 子宫内膜癌 基因表达 预后 NKAIN1 Endometiral carcinoma Gene expression Prognosis
  • 相关文献

参考文献4

二级参考文献32

  • 1Tan LJ, Lei SF, Chen XD, Liu MY, Guo YF, Xu H, Sun X et al. Establishment of peak bone mineral density in Southern Chinese males and its comparisons with other males from different regions of China. J Bone Miner Res 2007, 25:114-121
  • 2Deng HW, Xu FH, Huang QY, Shen H, Deng H, Conway T, Liu YJ et al. A whole-genome linkage scan suggests several genomic regions potentially containing quantitative trait loci for osteoporosis. J Clin Endocrinol Metab 2002, 87:5151-5159
  • 3Deng FY, Liu YZ, Xiao P, Jiang C, Li LM, Wu S, Chen Yet al. In vivo proteomics analysis of circulating monocytes in Chinese females underlying osteoporosis. Proteomics 2008, in Press
  • 4Peng X, Wood CL, Blalock EM, Chen KC, Landfield PW, Stromberg AJ. Statistical implications of pooling RNA samples for microarray experiments. BMC Bioinformatics 2003, 4:26
  • 5Perkins DN, Pappin D J, Creasy DM, Cottrell JS. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 1999, 20:3551-3567
  • 6Rosner B. Fundamentals of Biostatistics. 5th edn. Pacific Grove: Duxbury Press 2005
  • 7Masseroli M, Galati O, Pinciroli F. GFINDer: genetic disease and phenotype location statistical analysis and mining of dynamically annotated gene lists. Nucleic Acids Res 2005, 33:W717-W723
  • 8Ideker T, Thorsson V, Ranish JA, Christmas R, Buhler J, Eng JK, Bumgamer R et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 2001, 292: 929-934
  • 9Nie L, Wu G, Brockman F J, Zhang W. Integrated analysis of transcriptomic and proteomic data of Desulfovibrio vulgaris: Zeroinflated Poisson regression models to predict abundance of undetected proteins. Bioinformatics 2006, 22:1641-1647
  • 10Lee PS, Shaw LB, Choe LH, Mehra A, Hatzimanikatis V, Lee KH. Insights into the relation between mRNA and protein expression patterns: Ⅱ. Experimental observations in Escherichia coli. Biotechnol Bioeng 2003, 84:834-841

共引文献107

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部