期刊文献+

基于HPSO-BP神经网络的个人信用评估

Personal Credit Evaluation based on HPSO-BP Neural Network
下载PDF
导出
摘要 为了解决BP神经网络和标准PSO-BP神经网络模型收敛慢、易陷入局部最优值等问题,引入改进的粒子群算法HPSO,提出了基于HPSO-BP神经网络的信用评估模型。在PyCharm环境下,利用德国个人信用数据集,分别比较了BP神经网络模型、标准PSO-BP神经网络模型和文中的HPSO-BP神经网络模型。实验结果表明,基于HPSO-BP神经网络的评估模型在收敛速度和准确度上都优于另外两个模型。 To solve the problems such as slow convergence,local optimal of BP neural network and standard PSO-BP neural network credit evaluation models,this paper introduces an improved particle swarm algorithm HPSO,and propo-ses a credit evaluation model based on HPSO-BP neural network.Under PyCharm,by using the German personal credit data set,a comparing experiment is done on the BP neural network,the standard PSO-BP neural network and the HPSO-BP neural network.The results show that the credit evaluation model based on HPSO-BP neural network has better con-vergence speed and higher accuracy than the other two models.
作者 石丽红 陶宏才 SHI Lihong;TAO Hongcai(School of Information Science&Technology,Southwest Jiaotong University,Chengdu 611756,China)
出处 《成都信息工程大学学报》 2020年第2期146-150,共5页 Journal of Chengdu University of Information Technology
基金 国家自然科学基金资助项目(61806170)。
关键词 BP神经网络 标准PSO-BP HPSO-BP 信用评估 BP neural network standard PSO-BP HPSO-BP credit evaluation
  • 相关文献

参考文献7

二级参考文献72

  • 1王俊伟,汪定伟.粒子群算法中惯性权重的实验与分析[J].系统工程学报,2005,20(2):194-198. 被引量:86
  • 2张选平,杜玉平,秦国强,覃征.一种动态改变惯性权的自适应粒子群算法[J].西安交通大学学报,2005,39(10):1039-1042. 被引量:138
  • 3胡建秀,曾建潮.具有随机惯性权重的PSO算法[J].计算机仿真,2006,23(8):164-167. 被引量:37
  • 4刘晓峰,陈通.PSO算法的收敛性及参数选择研究[J].计算机工程与应用,2007,43(9):14-17. 被引量:23
  • 5KENNEDY J, EBEHERT R. Particle Swarm Optimization [C] // Proceeding of the IEEE International Conference on Neural Networks. Perth IEEE, 1995: 1942-1948.
  • 6SHI Y, EBERHART R C. A Modified Particle Swarm Opti- mizer [C]//Proceeding of the IEEE International Conference on Evolutionary Computation. Anchorage, 1EEE, 1998: 68-73.
  • 7SIRBU M A, TIGAR J D. NetBill: An Internet Commerce System Optimized for Network Delivered Services [J]. IEEE Personal Communications, 1995, 2(4): 34-39.
  • 8LANAGDON W B, POLl R. Evolving Problems to Learn a- bout Particle Swarm Optimizers and Other Search Algorithms[J]. IEEE Transactions on Evolutionary Computation , 2007, 11(5): 561-578.
  • 9LING S H. Improved Hybrid Particle Swarm Optimized Wave- let Neural Network for Modeling the Development of Fluid Dispensing for Electronic Packaging [J]. IEEE Transactions on Industrial Electronics, 2008, 55(9): 3447-3460.
  • 10SHI Y, EBERHART R C. Parameter Selection in Particle Swarm Optimization[C]// Annual Conference on Evolution- ary Programming. San Diego: IEEE, 1998.

共引文献137

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部