期刊文献+

基于注意力的深度协同在线学习资源推荐模型

An Attention-based Deep Collaborative Filtering Model for Online Course Recommendation
下载PDF
导出
摘要 推荐可以看作是一个匹配问题,即为适当的用户匹配适当的项。针对学习平台和课程资源数量剧增以及在线资源分散使得课程推荐质量不佳等问题,将注意力机制和深度学习融入课程推荐问题中,提出一个基于注意力的深度协同在线学习资源推荐模型来为高阶课程集关系进行建模。该模型结合学习者信息和课程资源特征,学习用户和课程的隐性线性特征和非线性特征,进行多模态特征拼合,融入注意力机制思想区分不同成对项目集对预测结果的贡献程度,以提升模型表示用户和课程的准确性,提高推荐性能。通过爬取慕课网(MOOC)上2014-2019年的学习数据进行实验,结果表明提出的模型在数据集userlabel08rl上多项评价指标要明显优于其它推荐算法。 A recommendation can be thought as a matching problem,i.e.,matching the appropriate item for the appropri-ate user.Aiming at the problems such as the increasing number of learning platforms and course resources and the poor quality of course recommendation caused by online resource dispersion,this paper integrates the attention mechanism and deep learning into the course recommendation,and proposes an attention-based deep collaborative filtering model for online learning resource recommendation so as to model the high-level course set relation.This model combines the characteristics of learner information and course resources to learn the invisible linear features and nonlinear features of the user and the course,and performs multi-modal feature matching,in order to improve the accuracy of the model in representing the user and the course and the recommendation performance.Through the experiment of crawled learning data from 2014 to 2019 on the MOOC network(MOOC),the results show that the proposed model in this paper is significantly better than other recommendation algorithms in multiple evaluation indexes on the real data set userlabel08rl.
作者 冯金慧 陶宏才 FENG Jinhui;TAO Hongcai(School of Information Science&Technology,Southwest Jiaotong University,Chengdu 611756,China)
出处 《成都信息工程大学学报》 2020年第2期151-157,共7页 Journal of Chengdu University of Information Technology
基金 国家自然科学基金资助项目(61806170)。
关键词 深度学习 协同过滤 注意力机制 在线课程 推荐模型 deep learning collaborative filtering attention mechanism online courses recommend model
  • 相关文献

参考文献2

二级参考文献76

  • 1Labrinidis A, Jagadish H V. Challenges and opportuni- ties with big data[ J]. Proceedings of the VLDB Endow- ment, 2012, 5(12): 2032-2033.
  • 2Ye Tao, Bickson D, Yan Qiang. Second workshop on large-scale recommender systems: research and best prac- tice [ C ] //J 8'h ACM Conference on Recommender Sys- tems, 2014 ACM. Silicon Valley: ACM Press, 2014: 385 -386.
  • 3Hong Jongyi, Suh E H, Kim J, et al. Contextaware sys- tem for proactive personalized service based on context history [J]. Expert Systems with Applications, 2009, 36 (4) : 7448-7457.
  • 4Pessemier T D, Deryckere T, Martens L. Extending the Bayesian classifier to a context-aware recommender system for mobile devices [ C ]//Internet and Web Applications and Services (ICIW), 2010 Fifth International Confer- ence on IEEE. Barcelona, Spain: IEEE Press, 2010: 242-247.
  • 5Shahabi C, Chen Yishin. An adaptive recommendation system without explicit acquisition of user relevanee feed- back [J]. Distributed and Parallel Databases, 2003, 14 (2) : 173-192.
  • 6Yang Diyi, Chen Tianqi, Zhang Weinan, et al. Local implicit feedback mining for music recommendation [ C 1// the 6th ACM Conference on Recommender Systems, 2012 ACM. Dublin: ACM Press, 2012: 91-98.
  • 7Rafailidis D, Nanopoulos A. Modeling the dynamics of user preferences in coupled tensor factorization [ C ] // the 8'h ACM Conference on Recommender Systems, 2014 ACM. Silicon Valley: ACM Press, 2014: 321- 324.
  • 8Oh K J, Lee W J, Lim C G, et al. Personalized news recommendation using classified keywords to capture user preference [ C ] //16th Advanced Communication Technology (ICACT) , 2014 International Conference on IEEE. South Korea: IEEE Press, 2014: 1283-1287.
  • 9Taktics G, Piltiszy I, N6meth B, et al. Scalable collabo- rative filtering approaches for large recommender systems [ J]. The Journal of Machine Learning Research, 2009, 10(12) : 623-656.
  • 10Bhagat S, Weinsberg U, Loannidis S, et al. Recom- mending with an agenda: active learning of private attributes using matrix factorization [ J]. ArXiv Preprint ArXiv, 2013: 1311-1321.

共引文献483

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部