摘要
对任意的正整数q,设A(q)表示模q在区间1≤m≤q中所有正则数的集合。在A(q)基础上引入一个新的算术函数,借助初等方法以及三角和性质研究了该函数的算术性质;利用此算术性质研究了包含该函数的一个无穷级数的计算问题,给出了此算术函数等于1时的具体形式,进而给出了一个包含该函数的一个有趣的恒等式。
For any positive integer q,let A(q)denote the set of all regular numbers of the modulo q in the interval 1≤m≤q.A new arithmetic function is introduced on the basis of A(q).The arithmetic properties of the function are studied by elementary methods and by applying the properties of trigonometric sums.Using this arithmetic property,we study the computational problem of an infinite series containing the function,and obtain the concrete form of the arithmetic function when it is equal to 1,then derive an interesting identity containing the function.
作者
沈慧津
SHEN Huijin(School of Mathematics,Northwest University,Xi’an 710100,China)
出处
《浙江大学学报(理学版)》
CAS
CSCD
北大核心
2020年第3期297-300,共4页
Journal of Zhejiang University(Science Edition)
基金
国家自然科学基金资助项目(1171351).