期刊文献+

S-拟正规嵌入子群与有限群的p-幂零性 被引量:8

The S-Quasinormally Embedded Subgroups and p-Nilpotency of Finite Groups
下载PDF
导出
摘要 设H是有限群G的子群.如果H的Sylow子群也分别是G的某个S-拟正规子群的Sylow子群,则称H在G中S-拟正规嵌入.利用子群的S-拟正规嵌入性给出了有限群为p-幂零群的一个充分条件,推广了已有的结论. A subgroup H of a group G is said to be S-quasinormally embedded in G,if every Sylow subgroup of H is also a Sylow subgroup of some S-quasinorml subgroup of G.In this paper,a sufficient condition for p-nilpotent groups have been obtained based on the assumption that some subgroups are S-quasinormal embedded.Our theorem is a generalization of the known results.
作者 袁媛 唐康 刘建军 YUAN Yuan;TANG Kang;LIU Jian-jun(School of Finance, Rongzhi College of Chongqing Technology and Business University, Chongqing 401320, China;School of Mathematics and Statistics, Southwest University, Chongqing 400715, China)
出处 《西南师范大学学报(自然科学版)》 CAS 北大核心 2020年第6期1-4,共4页 Journal of Southwest China Normal University(Natural Science Edition)
基金 国家自然科学基金项目(11301426) 重庆市基础研究与前沿探索项目(cstc2018jcyjAX0147) 中央高校基本科研业务费项目(XDJK2020B052) 西南大学教改项目(2019JY096)。
关键词 S-拟正规嵌入子群 S-拟正规子群 幂零类 P-幂零群 S-quasinormally embedded subgroup S-quasinormal subgroup nilpotency class p-nilpotent group
  • 相关文献

参考文献6

二级参考文献20

  • 1Ore O. Contributions in the theory of groups finite order[J]. Duke Math. J, 1939, 5: 431-460.
  • 2Ito and Sze'p. Uber die quasinormalteiler yon endliehen gruppen[J]. Act. Sei. Math, 1962, 23:168--170.
  • 3Kegal O H. Sylow grouppen and subnormalteiler endlieher grouppen[J].Math. Z, 1962, 78:202-- 221.
  • 4Asaad M, Ramadan M. Influence of s-quasinormality on maximal subgroups of Sylow subgroups of Fitting of a finite group[J].Arch Math, 1991, 56: 521--527.
  • 5Ballester-Bolinches A, Pedraza-Aquilera M C. Sufficient conditions for superSolvability of finite groups[J]. Journal of Pure and Applied Algebra, 1998, 127: 113--118.
  • 6Asaad M, Heliel A A. On S-quasinormaty embedded subgroups of finite groups[J]. Journal of Pure and Applied Algebra, 2001, 165: 129--135.
  • 7LI Y M, WANG Y M, WEI H Q. On p -nilpoteney of finite groups with some subgroups π -quasinomally embedded [J]. Acta Math Hungar, 2005, 108(4):1--17.
  • 8徐明耀.有限群导引(下册)IM].北京:科学出版社,1999.
  • 9Deskins W E. On quasinormal subgroups of finite groups[J]. Mathematisehe Zeitsehrift[J]. 1963, 82: 125--132.
  • 10Li Y, Wang Y. The influence of π-quasinormality of some subgroups of a finite group[J]. Arch Math, 2003, 81: 245--252.

共引文献13

同被引文献23

引证文献8

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部