摘要
设H是有限群G的子群.如果H的Sylow子群也分别是G的某个S-拟正规子群的Sylow子群,则称H在G中S-拟正规嵌入.利用子群的S-拟正规嵌入性给出了有限群为p-幂零群的一个充分条件,推广了已有的结论.
A subgroup H of a group G is said to be S-quasinormally embedded in G,if every Sylow subgroup of H is also a Sylow subgroup of some S-quasinorml subgroup of G.In this paper,a sufficient condition for p-nilpotent groups have been obtained based on the assumption that some subgroups are S-quasinormal embedded.Our theorem is a generalization of the known results.
作者
袁媛
唐康
刘建军
YUAN Yuan;TANG Kang;LIU Jian-jun(School of Finance, Rongzhi College of Chongqing Technology and Business University, Chongqing 401320, China;School of Mathematics and Statistics, Southwest University, Chongqing 400715, China)
出处
《西南师范大学学报(自然科学版)》
CAS
北大核心
2020年第6期1-4,共4页
Journal of Southwest China Normal University(Natural Science Edition)
基金
国家自然科学基金项目(11301426)
重庆市基础研究与前沿探索项目(cstc2018jcyjAX0147)
中央高校基本科研业务费项目(XDJK2020B052)
西南大学教改项目(2019JY096)。
关键词
S-拟正规嵌入子群
S-拟正规子群
幂零类
P-幂零群
S-quasinormally embedded subgroup
S-quasinormal subgroup
nilpotency class
p-nilpotent group