摘要
在计算机视觉领域,现有图像合成方法通常采用一对一的映射网络生成人脸表情,存在很大的建模局限性,难以表达丰富多样、复杂多变的人脸表情。为此,该文提出一种基于多任务增强生成对抗网络的图像合成方法。该方法构建多任务学习框架,改善人脸表情生成的多样性;通过设计双域卷积模块,利用具有补偿的频域信息改善空域特征映射;引入多尺度自适应激活函数,对不同特征进行自适应修正,进一步提升网络性能和特征映射效果。实验结果表明,该文方法能够同时生成多种逼真的人脸表情图像,与现有先进的图像合成方法相比,具有更好的定性和定量评估结果。
In computer vision fields,existing image synthesis methods usually feature a one-to-one mapping network to generate facial expressions.But they have the inherent limitations,which hinder the accurate representation of diverse facial expressions.For this reason,a novel multi-task enhanced generative adversarial network(MeGAN)for facial image synthesis is proposed.This network adopts a multi-task learning framework to improve the diversity of facial expression generation.The dual-domain convolution module is designed to use frequency-domain features as complementary information for improving the learning of spatial feature mapping.A multi-scale adaptive activation function is introduced to modify the feature maps adaptively for further improvement of network performance.Experimental results show that the proposed method can generate a variety of realistic facial expression images simultaneously and usually achieve better qualitative and quantitative results than the state-of-the-art methods.
作者
彭进业
曹煜
章勇勤
彭先霖
李展
王珺
张群喜
杨蕊
PENG Jinye;CAO Yu;ZHANG Yongqin;PENG Xianlin;LI Zhan;WANG Jun;ZHANG Qunxi;YANG Rui(School of Information Science and Technology,Northwest University,Xi′an 710127,China;Intelligent Interaction and Information Arts Research Center,Northwest University,Xi′an 710127,China;Shaanxi History Museum,Xi′an 710061,China;Luoyang Ancient Art Museum,Luoyang 471011,China)
出处
《西北大学学报(自然科学版)》
CAS
CSCD
北大核心
2020年第3期311-318,共8页
Journal of Northwest University(Natural Science Edition)
基金
国家重点研发计划资助项目(2017YFB1402103)
陕西省科技计划重点项目(2018ZDXM-GY-186)
西安市智能感知与文化传承重点实验室(2019219614SYS011CG033)
陕西高校青年杰出人才支持计划(360050001)。
关键词
深度学习
生成对抗网络
图像合成
人脸表情
多任务学习
deep learning
generative adversarial network
image synthesis
facial expression
multi-task learning