期刊文献+

MeGAN:基于多任务增强生成对抗网络的图像合成

MeGAN:Multi-task enhanced generative adversarialnetwork for image synthesis
下载PDF
导出
摘要 在计算机视觉领域,现有图像合成方法通常采用一对一的映射网络生成人脸表情,存在很大的建模局限性,难以表达丰富多样、复杂多变的人脸表情。为此,该文提出一种基于多任务增强生成对抗网络的图像合成方法。该方法构建多任务学习框架,改善人脸表情生成的多样性;通过设计双域卷积模块,利用具有补偿的频域信息改善空域特征映射;引入多尺度自适应激活函数,对不同特征进行自适应修正,进一步提升网络性能和特征映射效果。实验结果表明,该文方法能够同时生成多种逼真的人脸表情图像,与现有先进的图像合成方法相比,具有更好的定性和定量评估结果。 In computer vision fields,existing image synthesis methods usually feature a one-to-one mapping network to generate facial expressions.But they have the inherent limitations,which hinder the accurate representation of diverse facial expressions.For this reason,a novel multi-task enhanced generative adversarial network(MeGAN)for facial image synthesis is proposed.This network adopts a multi-task learning framework to improve the diversity of facial expression generation.The dual-domain convolution module is designed to use frequency-domain features as complementary information for improving the learning of spatial feature mapping.A multi-scale adaptive activation function is introduced to modify the feature maps adaptively for further improvement of network performance.Experimental results show that the proposed method can generate a variety of realistic facial expression images simultaneously and usually achieve better qualitative and quantitative results than the state-of-the-art methods.
作者 彭进业 曹煜 章勇勤 彭先霖 李展 王珺 张群喜 杨蕊 PENG Jinye;CAO Yu;ZHANG Yongqin;PENG Xianlin;LI Zhan;WANG Jun;ZHANG Qunxi;YANG Rui(School of Information Science and Technology,Northwest University,Xi′an 710127,China;Intelligent Interaction and Information Arts Research Center,Northwest University,Xi′an 710127,China;Shaanxi History Museum,Xi′an 710061,China;Luoyang Ancient Art Museum,Luoyang 471011,China)
出处 《西北大学学报(自然科学版)》 CAS CSCD 北大核心 2020年第3期311-318,共8页 Journal of Northwest University(Natural Science Edition)
基金 国家重点研发计划资助项目(2017YFB1402103) 陕西省科技计划重点项目(2018ZDXM-GY-186) 西安市智能感知与文化传承重点实验室(2019219614SYS011CG033) 陕西高校青年杰出人才支持计划(360050001)。
关键词 深度学习 生成对抗网络 图像合成 人脸表情 多任务学习 deep learning generative adversarial network image synthesis facial expression multi-task learning
  • 相关文献

参考文献3

二级参考文献9

  • 1周仁琴,周经野,陈益强,刘军发.基于特征发现的卡通人脸肖像生成[J].计算机辅助设计与图形学学报,2006,18(9):1362-1366. 被引量:16
  • 2Perez P, Gangnet M, Blake A. Poisson image editing [ J]. ACM Transactions on Graphics,2003,22(3) :313-318.
  • 3Agarwala A, Dontcheva M, Agarwala M, et al. Interactive digital photomontage [ C ]//Proceedings of SIGGRAPH 2004. Los Angeles, CA, USA : ACM Press 2004:294-302.
  • 4Jia J, Sun J, Tang C K, et al. Drag-and-drop pasting [ J ] . ACM Transactions on Graphics,2006,25 ( 3 ) :631 - 637.
  • 5Coates T F, Taylor C J, Cooper D. Active shape models-their training and application [ J ]. Computer Vision and Image Understanding, 1995,61 ( 1 ) :38-59.
  • 6Gao W,Cao B,Shan S. The CAS-PEAL Large Scale Chinese Face Database and Evaluation Protocols, JDL TR 04 FR 001 [R]. Beijing: Institute of Computing Technology, Chinese Academy of Sciences, 2004.
  • 7Gao Y, Ma L, Chen Z, et al. Motion normalization : The preprocess of motion data [ C ]//Proceedings of the ACM Symposium on Virtual Reality Software and Technology. New York, USA: ACM Press, 2005 : 253 - 256.
  • 8何俊,蔡建峰,房灵芝,何忠文.基于LBP/VAR与DBN模型的人脸表情识别[J].计算机应用研究,2016,33(8):2509-2513. 被引量:21
  • 9侯小红,郭敏.一种基于Harris-SIFT特征点检测的LBP人脸表情识别算法[J].西北大学学报(自然科学版),2017,47(2):209-214. 被引量:21

共引文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部