摘要
随着可穿戴设备与人工智能技术的发展,开发1种基于机器听觉理论的“非侵入式”心音识别系统显得尤为重要.然而,当前研究的局限在于可用于相关研究的公开的标准化数据库资源稀缺.并且,相关的研究成果存在可复现性不高、未考虑受试者独立性、测量指标不统一等缺陷.本文旨在介绍深圳大学总医院录制的全新标准化心音识别数据库——Heart Sounds Shenzhen(HSS),并讨论官方给出的标准化方法和基准线,指出心音识别领域的机遇与挑战,以期得到国内外同行的关注与后续的深入研究.
With the development of wearables and artificial intelligence,developing a non-invasive heart sound recognition system via the machine listening theory becomes a vital research topic.Nevertheless,a standard publicly accessible heart sound corpus is urgently lacking in the current studies.In addition,low reproducibility,subject-dependency,and inconsistent evaluation metrics prevail in the existing reported results.To this end,we introduce a most recent standard heart sound corpus,the Heart Sounds Shenzhen(HSS)database.We discuss the state-of-the-art methods and the baseline as featured in an official competition,and indicate the opportunities and challenges.We hope this contribution can attract more attention and further studies to this relevant area.
作者
钱昆
董逢泉
任昭
戴振宇
董博
博雅恩
QIAN Kun;DONG Fengquan;REN Zhao;DAI Zhenyu;DONG Bo;SCHULLER B. W.(Educational Physiology Laboratory,The University of Tokyo,Tokyo 113-0033,Japan;Department of Cardiology,Shenzhen University General Hospital,Shenzhen,Guangdong 518055,China;ZD.B Chair of Embedded Intelligence for Health Care and Wellbeing,University of Augsburg,Augsburg 86159,Germany;Department of Cardiology,First Affiliated Hospital of Wenzhou Medical University,Wenzhou,Zhejiang 325035,China;GLAM-Group on Language,Audio&Music,Imperial College London,London SW72AZ,UK)
出处
《复旦学报(自然科学版)》
CAS
CSCD
北大核心
2020年第3期354-359,共6页
Journal of Fudan University:Natural Science
基金
之江国际青年人才基金
日本学术振兴会外国人特别研究员项目(P19081)
日本学术振兴会特别研究员奖励费(19F19081)。
关键词
机器听觉
人工智能
医疗健康
心音识别
智能可穿戴设备
machine listening
artificial intelligence
medical healthcare
heart sound recognition
smart wearables