期刊文献+

基于Change-Point的风电数据挖掘算法研究 被引量:13

WIND TURBINE DATA MINING ALOGORITHM BASED ON CHANGE-POINT RESEARCH
下载PDF
导出
摘要 风电机组运行过程中,一些故障导致设备状态发生改变,状态的改变发生在一个持续的时间序列中,找到变化点的时间对于故障回溯及根本原因分析具有重要价值。该文研究风电信号及状态时序变化的特点,引入统计学中的Change-Point算法,通过划分不同置信区间求取置信度方法解决奇异变点的不确定度问题。通过实验对算法进行验证,得出以下结论:Change-Point算法能够有效挖掘到历史数据中的一维及二维模型数据的变化,并给出变点;Change-Point算法思想是挖掘出数据本身的规律性,不受其他条件限制,因此可广泛应用于风电机组数据采集与监视控制(supervisory control and data acquisition,SCADA)系统变量数据挖掘中的问题回溯,快速定位SCADA数据状态变化点。 In the wind turbine operation,faults lead to turbine state changes,which occur in a continuous time series. To find out the change timing is of great value to fault backtracking and root cause analysis. We studied the characteristics of time series changes of wind power signals and states,and introduced a statistics algorithm Change-Point,which solved the uncertainty of singularities by calculating the confidence levels in different divided confidence intervals. We carried out experiments to verify the algorithm and concluded that the Change-Point algorithm can effectively mine the changes of the one-dimensional and two-dimensional model data in the historical data and illustrate the change points. The idea of ChangePoint algorithm is to mine the regularity from the data,without limitation from other conditions. Therefore the algorithm can be widely applied to the fault backtracking in data mining of the system variables from wind turbines supervisory control and data acquisition(SCADA)system,and applied to rapidly positioning the SCADA data state change points.
作者 胥佳 李韶武 王桂松 刘瑞华 朱耀春 Xu Jia;Li Shaowu;Wang Guisong;Liu Ruihua;Zhu Yaochun(Long Yuan(Beijing)Wind Power Engineering Technology Co.,LTD.,Beijing 100034,China;School of Control and Computer Engineering,North China Electric Power University,Beijing 102206,China)
出处 《太阳能学报》 EI CAS CSCD 北大核心 2020年第5期136-141,共6页 Acta Energiae Solaris Sinica
基金 中国电机工程学会“青年人才托举工程”(J2B2017304)。
关键词 数据挖掘 数据采集与监视控制(SCADA)系统 风电机组 CHANGE-POINT 置信度 data mining supervisory control and data acquisition(SCADA) wind turbine Change-Point confidence level
  • 相关文献

参考文献5

二级参考文献55

  • 1Crabtree C J, Feng Y, Tavner P J. Detecting incipient wind turbine gearbox failure., a signal analysis method for on-line condition monitoring[C]//Proceeding of European Wind Energy Conference, Poland, 2010.
  • 2Hameed Z, Hong Y S, Cho Y M, et al. Condition monitoring and fault detection of wind turbines and related algorithms: a review[J]. Renewable and Sustainable Energy Reviews, 2009, 13(1): 1-39.
  • 3Amirat Y, Benbouzid M, A1-Ahmar E. A brief status on condition monitoring and fault diagnosis in wind energy conversion systems[J]. Renewable and Sustainable Energy Reviews, 2009, 13(9): 2629-2636.
  • 4Lu Bin, Li Yaoyu, Wu Xin. A review of recent advance in wind turbine condition monitoring and fault diagnosis [C]//Proceedings of Power Electronics and Machines in Wind Application, Lincoln, 2009: 1-7.
  • 5Zaher A, McArther S D J, Infield D G, et al. Online wind turbine fault detection through automated scada data analysis[J]. Wind Energy , 2009, 12(6): 574-593.
  • 6Yang Wenxian, Tavner P J, Crabtree C J, et al. Costeffective condition monitoring for wind turbines[J]. IEEE TranslndustrialElectronics, 2010, 57(1): 263-271.
  • 7Simon J W, Xiang B J, Yang Wenxian. Condition monitoring of the power output of wind turbine generators using wavelets[J]. IEEE Trans. on Energy Conversion, 2010, 25(3): 715-721.
  • 8Yang W, Tavner P J, Wilkinson M R. Condition monitoring and fault diagnosis of a wind turbine synchronous generator drive train[J]. Renewable Power Generation, 2009, 3(1): 1-11.
  • 9Wilkinson M R, Tavner P J. Condition monitoring of generators & other subassemblies in wind turbine drive trains[J]. Proceedings of IEEE International Symposium on Diagnostics for Electric Machines, Power Electrics and Drives, Cracow, 2007.
  • 10Gross K C, Singer R M, Wegerich S W, et al. Application of a model-based fault detection system to nuclear plant signals[C]//Proceedings of 9th International Conferenceon Intelligent Systems Application to Power System, Seoul, Korea, 1997.

共引文献264

同被引文献128

引证文献13

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部